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Figure 1: A study participant immersed in the living room environment co-solving the jigsaw puzzle with a virtual character.

Abstract
Virtual character’s intelligence and task complexity are essential
components for the design of collaboration between humans and
virtual characters. However, studies have yet to explore the impact
of a virtual character’s intelligence and task complexity during a
collaboration task. To explore these impacts, we implemented a
jigsaw puzzle co-solving experience and conducted a within-group
study (𝑁 = 27) following a 2 (intelligence: low vs. high) × 2 (com-
plexity: low vs. high) study design. During the puzzle co-solving
process, we collected participants’ gaze data for each experimental
condition. After our participants completed each condition (co-
solved the jigsaw puzzle), they answered a survey that captured
several variables. We found several significant main and interaction
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effect results indicating the impact of the virtual character’s intelli-
gence and the task’s complexity. Specifically, the virtual character’s
intelligence impacted most survey ratings, including the virtual
character’s intelligence, perceived collaboration, self-confidence,
and perceived contribution. Also, the task complexity affected per-
ceived collaboration, the virtual character’s public awareness, and
self-confidence. Furthermore, we found that the virtual character’s
intelligence and complexity dominantly impacted our participants’
task load and perception of the virtual character’s confidence. More-
over, we found that our participants gazed at the virtual character
and the puzzle piece more often than the puzzle goal across all
experimental conditions. Our findings can inform the design of
intelligent virtual characters that co-solve tasks with users.
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1 Introduction
Utilizing virtual reality to provide immersive interaction with in-
telligent virtual characters has opened new avenues in human-
computer interaction by providing more engaging user experiences
[Choi et al. 2024; Gamage and Ennis 2018; Yang et al. 2024]. This
trend has triggered the use of intelligent virtual characters in ap-
plications for various purposes, such as training [Choi et al. 2022;
Guimarães et al. 2020; Liu et al. 2022] or games [Gamage and Ennis
2018; Liu et al. 2023]. Several researchers have focused on utilizing
intelligent virtual characters in human-agent interaction within
virtual environments since intelligent virtual characters can ex-
press emotions [Qu et al. 2014; Volonte et al. 2020], complete tasks
[Shoulson et al. 2013], provide instructions [Choi et al. 2022] or
communicate with users through either verbal or nonverbal feed-
back [Zhao and Ma 2020]. Furthermore, several researchers have
investigated how features of virtual characters, such as appearance
and voice [Choi et al. 2023; Lam et al. 2023; Mousas et al. 2018,
2021; Nelson et al. 2022], impact user experiences like immersion
[Sierra Rativa et al. 2020] or social presence [Cui et al. 2021; Fox
et al. 2015; Yoon et al. 2019]. These studies have expanded explo-
ration into the impact of intelligent virtual characters on human
perception [Hanna et al. 2015] and user experiences [Kim et al.
2020] during collaboration. However, researchers have yet to in-
vestigate the effect of task complexity during co-solving tasks that
humans and intelligent virtual characters perform. Furthermore, to
the best of our knowledge, there has yet to be any study about the
impacts of a virtual character’s intelligence, task complexity, and
their interaction effect on human perceptions and user experiences
during collaborative tasks.

Thus, to explore how these factors impact study participants,
we implemented a virtual reality jigsaw puzzle co-solving experi-
ence with an intelligent virtual character (see Figure 1). We base
our decision to use a jigsaw puzzle co-solving activity on several
factors. First, as noted by Scoular et al. [Scoular et al. 2020], collab-
oration necessitates shared understanding and acknowledgment of
contribution. Completing a jigsaw puzzle provides a shared goal for
our participants and the virtual character, fostering collaboration.
Additionally, observing how the virtual character approaches the
puzzle enhances shared understanding. Second, since the virtual
character’s intelligence was essential to our study, we considered
the jigsaw puzzle since solving it requires cognitive and perceptual
abilities [Burns et al. 2006]. Fissler et al. [Fissler et al. 2018] de-
scribed jigsaw puzzle solving as a task demanding cognitive skills,
perceptual reasoning, and working memory, making it suitable for
our purposes. Last, researchers [Burghart et al. 2006; Häring et al.
2012] have used jigsaw puzzle solving as a collaborative task to
study human-agent interaction, supporting our choice.

We created four experimental conditions for our study following
a 2 (intelligence: low vs. high) × 2 (complexity: low vs. high) study

design. Regarding the intelligence factor, the virtual character with
0% intelligence (i.e., unintelligent virtual character) always placed
puzzle pieces in the wrong spots, and the virtual character with
100% intelligence always placed puzzle pieces in the correct spot.
In the case of the complexity factor, we defined it by changing the
number and size of puzzle pieces. The low complexity task consisted
of 25 puzzle pieces, and the high complexity task consisted of 100
puzzle pieces, smaller in size. We conducted a within-group study
(𝑁 = 27) to collect quantitative and qualitative data. Specifically, the
quantitative data includes participants’ ratings on their perceptions
and user experiences and application logs of participants’ dwell
gazing. The qualitative data consisted of participants’ feedback
regarding their experiences in co-solving the jigsaw puzzle.

We organized this paper into the following sections. In Section 2,
we discuss related work. In Section 3, we present our methodology
and materials. In Section 4, we report our results. In Section 5, we
discuss our findings, limitations, and implications of our study. Last,
in Section 6, we conclude and discuss future works.

2 Related Work
2.1 Human-Agent Interaction
Several researchers have focused on automation as one of the criti-
cal elements in defining an agent and expanded this definition to
include human-computer interaction [Lewis 1998; Norman 1994].
Based on this, agents can take various forms (i.e., virtual characters,
robots) with the capacity to perform specific tasks automatically.
Researchers have explored human-agent interaction with multiple
dimensions. Sauppé and Mutlu [Sauppé and Mutlu 2015] presented
an instructional robot for training machine assembly and its instruc-
tional style to enhance training outcomes in terms of performance
and user experience. Goetz et al. [Goetz et al. 2003] investigated
the impact of matching the appearance and behavior of robots
on humans and robot collaboration. They found that participants
followed the robot more when its attitude aligned with the serious-
ness of the given task. Salem et al. [Salem et al. 2011] delved into
the non-verbal behaviors of humanoid robots and reported that
gestures positively impacted participants’ evaluation of the robot.

Furthermore, Yang et al. [Yang et al. 2022] focused on a virtual
character that translated a lecture to sign language in amixed reality
environment and investigated how this virtual character framing
and manipulation affected users’ preferences and accessibility. They
reported that their participants preferred a virtual character, the
size of which is similar to a real human. Zibrek and McDonnell
[Zibrek and McDonnell 2014] integrated different rendering styles
into a virtual character to investigate how it affected the human
perception of the virtual character’s personality. They found that
the cartoon style made the virtual character appear to have a more
agreeable personality. Moreover, Wang et al. [Wang et al. 2019]
compared different types of virtual agents, such as voice-only or
different-sized virtual agents, in augmented reality platforms and
found that participants preferred miniature embodied agents.

2.2 Collaboration between Human and Agent
Researchers have explored collaboration between humans and vir-
tual agents. Bellamy et al. [Bellamy et al. 2017] emphasized the
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necessity for mutual understanding of goals and tasks in human-
agent interaction and highlighted the significance of trust in virtual
agents during collaboration. Andrist et al. [Andrist et al. 2017] de-
veloped a collaborative virtual agent that guided participants in
making sandwiches and introduced a bidirectional gaze model. This
model enabled the virtual agent to comprehend the participant’s
gaze and reciprocate with its gaze to facilitate communication.
Their findings revealed that this gaze model improved performance
and reduced errors during collaborative tasks. Schmidbauer et al.
[Schmidbauer et al. 2020] investigated collaborative robots assist-
ing humans in assembly tasks and proposed a methodology for
efficient task allocation between humans and robots. Additionally,
Moradinezhad and Solovey [Moradinezhad and Solovey 2021] ex-
amined how the cooperativeness of virtual characters influenced
trust levels among participants. They reported that participants
exhibited higher trust in more cooperative virtual characters and
stressed the significance of a virtual character’s cooperativeness
based on prior experiences.

2.3 Collaborative and Intelligent Agent
Researchers have explored the impact of collaborative and intel-
ligent agents. Cavazza et al. [Cavazza et al. 2001] implemented
interactive virtual agents for storytelling. They integrated the Hi-
erarchical Task Network with the AO* (And-Or Search) algorithm
to decide the virtual agents’ behavior. They presented how these
virtual agents interacted with users and other virtual agents to syn-
thesize dynamic storytelling. Furthermore, Baker et al. [Baker et al.
2019] presented a methodology to train multiple virtual agents to
play the hide-and-seek game using reinforcement learning. They
reported that the trained virtual agents cooperated to win the game.
Choi et al. [Choi et al. 2023] investigated how the appearance and
voice of a collaborative virtual character affected human perception
and found that the human-like voice could trigger a positive per-
ception of the virtual character despite the mismatch between its
appearance and voice. Walter et al. [Walters et al. 2009] investigated
the impact of robots’ appearance and embodiment on human per-
ception and reported that their participants rated humanoid robots
as having higher perceived intelligence than mechanical robots.
Guo et al. [Guo et al. 2024] investigated the impact of self-similarity
of appearance and voice between human and virtual characters on
human perception. They indicated that the self-similar appearance
of the virtual character made participants feel the virtual character
was more intelligent. Finally, Krenig and Feigh [Krening and Feigh
2018] investigated agents based on machine learning and indicated
that people felt the agents trained by action instruction were more
intelligent than others trained by critiques.

2.4 Task Complexity
To design collaboration between humans and agents, it is neces-
sary to consider not only virtual agents but also task complexity
[Kiyokawa et al. 2023]. Task complexity has been defined by vari-
ous components, such as the number of elements [Williams 1999],
relationships between tasks [Wood 1986], time pressure [Greitzer
2005], and cognitive demands [Bailey and Scerbo 2007]. Several re-
searchers have investigated the impact of task complexity on human
and agent interaction. Stollnberger et al. [Stollnberger et al. 2013]

focused on the interdependency of input modality and task com-
plexity. They indicated that the perceived task complexity is highly
related to the cognitive workload based on the input modality. Ma-
lik and Bilberg [Malik and Bilberg 2019] presented task allocation
based on task complexity and indicated that the proposed task al-
location enhanced the efficiency of human and robot interaction.
Last, Guo et al. [Guo et al. 2020] investigated the impact of the type
of conversation and task complexity on human and conversational
agent interaction. They reported higher task complexity caused
more queries for each task.

2.5 Research Questions
Although previous studies have explored various factors of human
and agent interaction, few studies have focused on the intelligence
of virtual characters. Also, despite the importance of task complex-
ity in collaboration between humans and agents, the impacts of task
complexity on human perceptions and user experiences still lack
sufficient understanding. Furthermore, to our knowledge, the inter-
action effects of virtual characters’ intelligence and task complexity
have yet to be investigated. Thus, in this paper, we examined five
overarching topics, each including sub-questions to understand
how the virtual character’s intelligence and task complexity during
a co-solving task could affect participants’ perceptions and user
experience:

• Virtual Character’s Intelligence:
– RQ1.1: How do a virtual character’s intelligence and the
complexity of the task impact study participants’ per-
ceived intelligence ratings?

– RQ1.2: How do a virtual character’s intelligence and the
complexity of the task impact study participants’ intelli-
gence comparison ratings?

• Perceptual Experience:
– RQ2.1: How do a virtual character’s intelligence and the
complexity of the task impact study participants’ per-
ceived collaboration rating?

– RQ2.2: How do a virtual character’s intelligence and the
complexity of the task impact study participants’ per-
ceived contribution ratings?

– RQ2.3: How do a virtual character’s intelligence and the
complexity of the task impact study participants’ ratings
regarding the virtual character’s public awareness?

• User Experience:
– RQ3.1: How do a virtual character’s intelligence and the
complexity of the task impact study participants’ atten-
tional allocation ratings?

– RQ3.2: How do a virtual character’s intelligence and the
complexity of the task impact study participants’ task load
ratings?

– RQ3.3: How do a virtual character’s intelligence and the
complexity of the task impact study participants’ frustra-
tion ratings?

• Confidence in Performance:
– RQ4.1: How do a virtual character’s intelligence and the
complexity of the task impact study participants’ self-
confidence ratings?
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– RQ4.2: How do a virtual character’s intelligence and the
complexity of the task impact study participants’ ratings
regarding the virtual character’s confidence?

• Gazing during Co-solving Process:
– RQ5.1: How do a virtual character’s intelligence and the
complexity of the task impact study participants’ dwell
gazing patterns?

2.6 Contribution
So far, several researchers have explored interactions between hu-
mans and intelligent virtual characters in virtual reality. However,
to our knowledge, this is the first study investigating the impact
of a virtual character’s intelligence and task complexity on human
perceptions and user experience. Thus, in this paper, we contribute
to expanding the current knowledge on combining two levels of a
virtual character’s intelligence and task complexity. We also provide
insights to researchers and developers interested in human percep-
tions and user experience in virtual reality applications where users
collaborate to solve tasks with a virtual character.

3 Materials and Methods
3.1 Participants
We performed an a priori power analysis using the G*Power soft-
ware [Faul et al. 2009] with the following settings: a medium effect
size [Cohen 2013] of 𝑓 = .30, an 𝛼 = .05 error probability, one group
with four repeated measurements, an 𝑟 = .50 correlation among
repeated measures, and an 𝜖 = .70 for non-sphericity correction.
The power analysis suggested an 𝑁 = 21 sample size to achieve
a .80 power (1 − 𝛽 error probability). We recruited 27 participants
through class announcements and emails forwarded to our univer-
sity’s listservs. Our participants (age range: 18−52) were composed
of ten males (age: 𝑀 = 22.70, 𝑆𝐷 = 10.81) and 17 females (age:
𝑀 = 22.59, 𝑆𝐷 = 5.8). Most participants reported they had some
prior experience with virtual reality applications.

3.2 Implementation
We implemented our virtual reality jigsaw puzzle co-solving ap-
plication in the Unity (version 2020.3.20) game engine using the
Oculus Integration Toolkit. For implementation and experimenta-
tion, we used a Dell Alienware computer (Intel i7, NVIDIA GeForce
RTX 2080, and 32GB RAM) and Meta Quest 2 as a virtual reality
head-mounted display.

We integrated a 3D living room model into our application to
provide immersive experiences to our participants (see Figure 2).
When we immersed our participants in the virtual environment,
they found themselves sitting on a chair in front of a table in the
living room. On the table, we placed puzzle pieces to be solved,
a puzzle board where these pieces would be placed, and a puzzle
goal to provide participants with a clear image of the completed
puzzle. Specifically, the puzzle board has a semitransparent texture
to let participants place a puzzle piece in the target spot. The puzzle
pieces were automatically attached when they were at a certain
distance from their target spots on the puzzle board.

On the right side of the participants, we placed a virtual char-
acter that solved the puzzles with them (see Figure 3). The virtual

Figure 2: We immersed our participants in a 3D living room
environment.

character is a human female 3D model (Female_Adult_01) from Mi-
crosoft’s Rockebox Avatar library.1 To enable the virtual character
to solve the jigsaw puzzle, we implemented a script that decided the
behavior of the virtual character. The behavior was composed of
two actions: one is picking up a puzzle piece, and the other is plac-
ing it in a specific spot. The implemented script randomly chose
an unsolved puzzle piece on the table and decided whether the
virtual character placed it in the correct or wrong spot based on
the assigned intelligence. Specifically, the virtual character’s intel-
ligence is the probability of the virtual character placing a puzzle
piece in the correct spot. For example, a virtual character with 100%
intelligence always places puzzle pieces in the correct spot. In con-
trast, the virtual character always places puzzle pieces in the wrong
spots when assigned to 0% intelligence (i.e., unintelligent virtual
character). The virtual character repeated its routine during the
co-solving process with the participant until the puzzle was fully
solved. To animate the virtual character according to decisions from
the script, we integrated forward and backward reaching inverse
kinematics solver [Aristidou and Lasenby 2011] into the virtual
character to make it pick up a puzzle piece and place it on a specific
spot.

To achieve engaging and realistic user experiences [Feldman
et al. 2017], we implemented a short talk that evolved during the co-
solving process’ beginning, middle, and end. The virtual character
asked questions, and our application rendered a set of predefined
answers using a graphical user interface (GUI). The participants
could answer by clicking one of the answers through the ray from
the virtual reality controller. Also, we integrated other predefined
speech based on the progress of the co-solving process (e.g., when
the co-solving process started, the virtual character said “This puzzle
looks so hard to solve," and during the co-solving process, the virtual
character said “It looks easy now,” “Let me think where this puzzle
piece goes,” or “I enjoy solving the puzzle.” ). For the dialogs, we
generated the speech using a female voice model on PlayHT.2 Note
that we used the same dialogue in all experimental conditions
to eliminate introducing additional variables to our experiment
and, therefore, to standardize our experimental conditions. We also

1https://github.com/microsoft/Microsoft-Rocketbox
2https://play.ht/

https://github.com/microsoft/Microsoft-Rocketbox
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Figure 3: When we immersed our participants in the virtual
environment, they could see the puzzle pieces, the puzzle
board on the table, and the virtual character on their right
side.

integrated the Salsa LipSync Suite3 from Unity Asset Store into
the virtual character to synthesize its lip sync animation. Finally,
we implemented eye blinks and head movements to enhance the
realism of the virtual character.

3.3 Experimental Conditions
Following our 2 (intelligence: low intelligence [LI] vs. high intel-
ligence [HI]) × 2 (complexity: low complexity [LC] vs. high com-
plexity [HC]) study design, we created the following experimental
conditions:

• LILC: low intelligence (0%) and low complexity (25 puzzle
pieces);

• LIHC: low intelligence (0%) and high complexity (100 puzzle
pieces);

• HILC: high intelligence (100%) and low complexity (25 puz-
zle pieces); and

• HIHC: high intelligence (100%) and high complexity (100
puzzle pieces).

Based on the assigned intelligence, the virtual character places
puzzle pieces in each condition on the wrong spots (intelligence: 0%)
or the correct spot (intelligence: 100%). Regarding task complexity,
we followed the factors outlined by Kiyokawa et al. [Kiyokawa et al.
2023], specifically defining it based on the number of puzzle pieces
and their size. For this study, we assigned 25 puzzle pieces to the
low complexity and 100 to the high complexity (see Figure 4 and
Figure 5). The size of the puzzle and puzzle board was the same for
all conditions. Thus, the puzzle piece size in the low complexity was
four times larger than the puzzle piece size in the high complexity
conditions.

3.4 Ratings and Measurements
After each condition, we provided the developed survey to explore
how the virtual character’s intelligence and task complexity im-
pacted our participants. We also recorded application logs during
the co-solving process.

3https://assetstore.unity.com/packages/tools/animation/salsa-lipsync-suite-148442

3.4.1 Survey. We developed a survey to understand how our par-
ticipants perceived the virtual character and their user experience
during the jigsaw puzzle co-solving process. The survey was com-
posed of six items for perceived intelligence from Moussawi and
Koufaris [Moussawi and Koufaris 2019], six items for perceived
collaboration from Liu et al. [Liu et al. 2023], two items for pub-
lic awareness of the virtual character from Govern and Marsch
[Govern and Marsch 2001], six items for attentional allocation from
Biocca et al. [Biocca et al. 2001], and six items for task load from
NASA TLX [Hart 2006]. We also included one item for intelligence
comparison, one for perceived contribution, one for frustration,
one for self-confidence, and one for the confidence of the virtual
character we developed. We used a 7-point Likert scale for all items
except NASA TLX. For the NASA TLX, we used its original scale,
21 gradations on the scales. We provide our survey we developed
in our supplementary materials.

3.4.2 Application Logs. Gaze has been used to interpret human
attention [Ajanki et al. 2009; Knight and Simmons 2013; Krogmeier
and Mousas 2020, 2021; Li et al. 2017] in various contexts. Thus,
we collected application logs of our participants’ dwell gazing on
the virtual character and objects to understand their interest and
attention during co-solving puzzles with the virtual character:

• Virtual character dwell gazing:We measured how long
(in seconds) participants gazed at the virtual character (face,
arm, and torso).

• Puzzle goal dwell gazing: We measured how long (in sec-
onds) participants gazed at the puzzle goal.

• Puzzle pieces dwell gazing: We measured how long (in
seconds) participants gazed at puzzle pieces.

To collect these logs, we integrated a pseudo-gazingmethodology
into our application. Specifically, we projected a ray from the center
of the participant’s camera in its forward direction. When the ray
collided with one of the targeted virtual objects, it returned the
duration of this collision with the name of the collided virtual object.
The application returned accumulated dwell gazing durations when
participants completed the co-solving process. For our statistical
analyses, we normalized these durations by using the total time in
each condition.

3.5 Procedure
We first invited our participants into our lab space and introduced
them to the experiment and the purpose of the study. After they
signed the consent form, researchers helped them set up and adjust
the virtual reality equipment. Once the participants were ready,
we started a tutorial scene to familiarize themselves with the in-
teraction mechanism and the controller. We did so because a prior
study showed that tutorials about controllers improve participants’
performance and user experience [Kao et al. 2021]. Once our partic-
ipants indicated they were ready, we started the experiment with
the first condition. The order in which our participants experienced
each condition was based on the Latin square method [Williams
1949], which balances the conditions to eliminate first-order carry-
over (residual) effects. Participants solved the jigsaw puzzle task
in each condition with our virtual character. Once our participants
had completed each condition, they removed the headsets and pro-
vided their ratings on the survey. Participants needed to repeat the

https://assetstore.unity.com/packages/tools/animation/salsa-lipsync-suite-148442
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(a) (b) (c)

Figure 4: The puzzle we used in our study: (a) completed puzzle, (b) 25 pieces for the low complexity task, and (c) 100 pieces for
the high complexity task.

(a) (b)

Figure 5: The virtual character solves the jigsawpuzzle during
the (a) low complexity and (b) high complexity task.

process until all four conditions were complete. When the partici-
pants completed all conditions, we asked them to leave feedback
about their user experiences with the four conditions. Then, the
researchers expressed their appreciation and excused the partici-
pants. There was at least a 10-minute gap between each experiment
session. Participants spent at most 60 minutes in our lab to finish
the study.

4 Results
To analyze self-reported ratings, we used a 2×2 factorial experi-
ment design. We used two independent variables, intelligence and
complexity, and ten dependent variables from self-reported ratings.
Regarding application logs, we used 2×2×3 factorial experiment
design to investigate differences among dwell gazing. Specifically,
we used three independent variables (intelligence, complexity, and
gazes [virtual character vs. puzzle goal vs. puzzle pieces]) and three
dependent variables. We examined the normality of our data graph-
ically using Q-Q plots of the residuals and the Shapiro-Wilk test
at the 5% level. Our data was normally distributed; thus, we used
two-way and three-way repeated measures analysis of variance

(ANOVA), respectively, for the mentioned measurement. We pro-
vide detailed results for the self-reported data and application logs
in Table 1 and Table 2, respectively.

4.1 Self-reported Ratings
Perceived Intelligence. Our simple main effect analysis on the in-

telligence factor indicated that our participants rated the perceived
intelligence lower when we exposed them to the low intelligence
(𝑀 = 1.70, 𝑆𝐸 = .27) than the high intelligence (𝑀 = 5.23, 𝑆𝐸 = .27)
conditions (Wilk’s Λ = .329, 𝐹 [1, 26] = 53.132, 𝑝 < .001, 𝜂2𝑝 = .671).
However, we did not find a statistically significant result for the
complexity factor (Wilk’s Λ = .908, 𝐹 [1, 26] = 2.646, 𝑝 = .116,
𝜂2𝑝 = .092) and for the intelligence×complexity interaction (Wilk’s
Λ = .936, 𝐹 [1, 26] = 1.771, 𝑝 = .195, 𝜂2𝑝 = .064).

Intelligence Comparison. Our simple main effect analysis on the
intelligence factor indicated that our participants rated the intelli-
gence comparison lower when we exposed them to the low intel-
ligence (𝑀 = 1.70, 𝑆𝐸 = .17) than the high intelligence (𝑀 = 3.47,
𝑆𝐸 = .31) conditions (Wilk’s Λ = .390, 𝐹 [1, 26] = 40.647, 𝑝 < .001,
𝜂2𝑝 = .610). However, we did not find a statistically significant result
for the complexity factor (Wilk’s Λ = .994, 𝐹 [1, 26] = .146, 𝑝 = .705,
𝜂2𝑝 = .006) and the intelligence×complexity interaction (Wilk’s
Λ = .917, 𝐹 [1, 26] = 2.359, 𝑝 = .137, 𝜂2𝑝 = .083).

Perceived Collaboration. Our simple main effect analysis on the
intelligence factor indicated that our participants rated the per-
ceived collaboration lower when we exposed them to the low intel-
ligence (𝑀 = 3.97, 𝑆𝐸 = .26) than the high intelligence (𝑀 = 5.57,
𝑆𝐸 = .23) conditions (Wilk’s Λ = .264, 𝐹 [1, 26] = 72.669, 𝑝 < .001,
𝜂2𝑝 = .736). Moreover, our main effect analysis on the complex-
ity factor showed that our participants rated the perceived col-
laboration higher when we exposed them to the low complex-
ity (𝑀 = 5.03, 𝑆𝐸 = .22) than the high complexity (𝑀 = 4.52,
𝑆𝐸 = .26) conditions (Wilk’s Λ = .616, 𝐹 [1, 26] = 16.206, 𝑝 < .001,
𝜂2𝑝 = .384). However, we did not find a statistically significant re-
sult for the intelligence×complexity interaction (Wilk’s Λ = .983,
𝐹 [1, 26] = .444, 𝑝 = .511, 𝜂2𝑝 = .017).
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Table 1: Detailed results of our study for the self-reported ratings (we present significant results with bold font).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

𝑀 𝑆𝐷 𝑀 𝑆𝐷 𝑀 𝑆𝐷 𝑀 𝑆𝐷 𝑀 𝑆𝐷 𝑀 𝑆𝐷 𝑀 𝑆𝐷 𝑀 𝑆𝐷 𝑀 𝑆𝐷 𝑀 𝑆𝐷

LILC 3.40 1.43 1.59 .97 4.27 1.24 2.48 1.22 2.31 1.32 3.00 .71 10.31 4.15 4.19 1.92 5.44 1.87 3.85 1.88
LIHC 3.35 1.57 1.81 1.11 3.67 1.67 2.81 2.02 1.69 1.12 3.11 .85 9.84 4.87 4.00 2.25 3.70 2.18 4.70 2.00
HILC 5.46 1.56 3.59 1.99 5.79 1.27 5.93 1.49 3.72 2.16 3.27 1.16 7.09 2.47 1.74 1.13 6.00 1.73 5.41 1.36
HIHC 4.99 1.49 3.22 1.63 5.36 1.28 5.52 1.55 2.31 2.03 3.25 .95 9.42 4.10 2.22 1.48 4.78 2.01 5.19 1.76

Main Effect (Intelligence)

𝐹 53.132 40.647 72.669 82.049 15.822 .912 10.667 40.026 6.699 8.543
𝑝 <.001 <.001 <.001 <.001 <.001 .348 .003 <.001 .016 .007
𝜂2𝑝 .671 .610 .736 .759 .378 .034 .291 .606 .205 .247

Main Effect (Complexity)

𝐹 2.646 .146 16.206 .026 12.564 .085 3.587 .217 33.32 2.276
𝑝 .116 .705 <.001 .873 .002 .772 .069 .645 <.001 .143
𝜂2𝑝 .092 .006 .384 .001 .326 .003 .121 .008 .562 .08

Interaction Effect (Intelligence×Complexity)

𝐹 1.771 2.359 .444 3.178 .202 .384 25.911 2.4 1.16 5.709
𝑝 .195 .137 .511 .086 .657 .541 <.001 .133 .291 .024
𝜂2𝑝 .064 .083 .017 .109 .008 .015 .499 .085 .043 .18

Intelligence df = 1, Complexity df = 1, Interaction df = 1, Error df = 26

(1) Perceived Intelligence, (2) Intelligence Comparison, (3) Perceived Collaboration, (4) Perceived Contribution, (5) Public Awareness of the
Virtual Character, (6) Attentional Allocation, (7) Task Load, (8) Frustration, (9) Self-Confidence, (10) Confidence of the Virtual Character.

Perceived Contribution. Our simple main effect analysis on the in-
telligence factor indicated that our participants rated the perceived
contribution lower when we exposed them to the low intelligence
(𝑀 = 2.65, 𝑆𝐸 = .28) than the high intelligence (𝑀 = 5.72, 𝑆𝐸 = .26)
conditions (Wilk’s Λ = .241, 𝐹 [1, 26] = 82.049, 𝑝 < .001, 𝜂2𝑝 = .759).
However, we did not find a statistically significant result for the
complexity factor (Wilk’s Λ = .999, 𝐹 [1, 26] = .026, 𝑝 = .873,
𝜂2𝑝 = .001) and the intelligence×complexity interaction (Wilk’s
Λ = .891, 𝐹 [1, 26] = 3.178, 𝑝 = .086, 𝜂2𝑝 = .109).

Public Awareness of the Virtual Character. Our simple main effect
analysis on the intelligence factor indicated that our participants
rated the public awareness of the virtual character lower when we
exposed them to the low intelligence (𝑀 = 2.00, 𝑆𝐸 = .22) than the
high intelligence (𝑀 = 3.47, 𝑆𝐸 = .38) conditions (Wilk’s Λ = .622,
𝐹 [1, 26] = 15.822, 𝑝 < .001, 𝜂2𝑝 = .378). Moreover, our main effect
analysis on the complexity factor showed that our participants
rated the public awareness of the virtual character higher when we
exposed them to the low complexity (𝑀 = 3.02, 𝑆𝐸 = .29) than the
high complexity (𝑀 = 2.45, 𝑆𝐸 = .24) conditions (Wilk’s Λ = .674,
𝐹 [1, 26] = 12.564, 𝑝 = .002, 𝜂2𝑝 = .326). However, we did not
find a statistically significant result for the intelligence×complexity
interaction (Wilk’s Λ = .992, 𝐹 [1, 26] = .202, 𝑝 = .657, 𝜂2𝑝 = .008).

Attentional Allocation. We did not find a statistically significant
result on our participants’ attentional allocation rating for the intel-
ligence (Wilk’s Λ = .966, 𝐹 [1, 26] = .912, 𝑝 = .348, 𝜂2𝑝 = .034) and
complexity (Wilk’s Λ = .997, 𝐹 [1, 26] = .085, 𝑝 = .772, 𝜂2𝑝 = .003)
factors, and intelligence×complexity interaction (Wilk’s Λ = .985,
𝐹 [1, 26] = .384, 𝑝 = .541, 𝜂2𝑝 = .015).

Task Load. Our simple main effect analysis on the intelligence
factor indicated that our participants rated the task load higher
when we exposed them to the low intelligence (𝑀 = 10.08, 𝑆𝐸 = .84)
than the high intelligence (𝑀 = 8.26, 𝑆𝐸 = .57) conditions (Wilk’s
Λ = .709, 𝐹 [1, 26] = 10.667, 𝑝 = .003, 𝜂2𝑝 = .291). We did not find
a statistically significant result for the complexity factor (Wilk’s
Λ = .879, 𝐹 [1, 26] = 3.587, 𝑝 = .069, 𝜂2𝑝 = .121). However, we found
a statistically significant intelligence×complexity interaction effect
(Wilk’s Λ = .501, 𝐹 [1, 26] = 25.911, 𝑝 < .001, 𝜂2𝑝 = .499), indicating
that, in the presence of the low intelligence, participants rated the
task load higher.

Frustration. Our simple main effect analysis on the intelligence
factor indicated that our participants rated their frustration higher
when we exposed them to the low intelligence (𝑀 = 4.09, 𝑆𝐸 =

.33) than the high intelligence (𝑀 = 1.98, 𝑆𝐸 = .21) conditions
(Wilk’s Λ = .394, 𝐹 [1, 26] = 40.026, 𝑝 < .001, 𝜂2𝑝 = .606). However,
we did not find a statistically significant result for the complexity
factor (Wilk’s Λ = .992, 𝐹 [1, 26] = .217, 𝑝 = .645, 𝜂2𝑝 = .008) and
intelligence×complexity interaction (Wilk’s Λ = .915, 𝐹 [1, 26] =
2.400, 𝑝 = .133, 𝜂2𝑝 = .085).

Self-confidence. Our simple main effect analysis on the intelli-
gence factor indicated that our participants rated their self-confidence
lower when we exposed them to the low intelligence (𝑀 = 4.57,
𝑆𝐸 = .34) than the high intelligence (𝑀 = 5.39, 𝑆𝐸 = .33) conditions
(Wilk’s Λ = .795, 𝐹 [1, 26] = 6.699, 𝑝 = .016, 𝜂2𝑝 = .205). More-
over, our main effect analysis on the complexity factor showed
that our participants rated their self-confidence higher when we
exposed them to the low complexity (𝑀 = 5.72, 𝑆𝐸 = .31) than the
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high complexity (𝑀 = 4.24, 𝑆𝐸 = .33) conditions (Wilk’s Λ = .438,
𝐹 [1, 26] = 33.320, 𝑝 < .001, 𝜂2𝑝 = .562). However, we did not
find a statistically significant result for the intelligence×complexity
interaction (Wilk’s Λ = .957, 𝐹 [1, 26] = 1.160, 𝑝 = .291, 𝜂2𝑝 = .043).

Confidence of the Virtual Character. Our simple main effect anal-
ysis on the intelligence factor indicated that our participants rated
the confidence of the virtual character lower when we exposed
them to the low intelligence (𝑀 = 4.28, 𝑆𝐸 = .33) than the high
intelligence (𝑀 = 5.30, 𝑆𝐸 = .27) conditions (Wilk’s Λ = .753,
𝐹 [1, 26] = 8.543, 𝑝 = .007, 𝜂2𝑝 = .247). We did not find a statisti-
cally significant result for the complexity factor (Wilk’s Λ = .920,
𝐹 [1, 26] = 2.276, 𝑝 = .143, 𝜂2𝑝 = .080). However, we found a statisti-
cally significant intelligence×complexity interaction effect (Wilk’s
Λ = .820, 𝐹 [1, 26] = 5.709, 𝑝 = .024, 𝜂2𝑝 = .180), indicating that, in
the presence of high intelligence, participants rated the confidence
of the virtual character higher.

4.2 Application Logs
Dwell Gazing. We did not find a statistically significant result

on collected dwell gazing for the intelligence (Wilk’s Λ = .939,
𝐹 [1, 26] = 1.691, 𝑝 = .205, 𝜂2𝑝 = .061) and complexity (Wilk’s
Λ = .982, 𝐹 [1, 26] = .473, 𝑝 = .498, 𝜂2𝑝 = .018) factors. However, the
simple main effect analysis on the gazes factor indicated a statisti-
cally significant result (Wilk’s Λ = .149, 𝐹 [1, 25] = 71.150, 𝑝 < .001,
𝜂2𝑝 = .851). The post hoc pairwise comparison showed that partici-
pants gazed at the puzzle goal less time (𝑀 = .01, 𝑆𝐸 = .00) than the
virtual character (𝑀 = .11, 𝑆𝐸 = .01; 𝑝 < .001) and puzzle pieces
(𝑀 = .10, 𝑆𝐸 = .01; 𝑝 < .001).We did not find statistically significant
interaction effects for intelligence×complexity (Wilk’s Λ = .866,
𝐹 [1, 26] = 4.018, 𝑝 = .056, 𝜂2𝑝 = .134), intelligence×gaze (Wilk’s
Λ = .931, 𝐹 [1, 25] = .924, 𝑝 = .410,𝜂2𝑝 = .069), and complexity×gaze
(Wilk’s Λ = .956, 𝐹 [1, 25] = .573, 𝑝 = .571, 𝜂2𝑝 = .044). However, we
found a significant intelligence×complexity×gaze interaction effect
(Wilk’s Λ = .700, 𝐹 [1, 25] = 5.370, 𝑝 = .011, 𝜂2𝑝 = .300), indicating
that participants gazed at either the virtual character or puzzle
pieces rather than the puzzle goal, regardless of the intelligence
and complexity factors.

4.3 Qualitative Data
We asked our participants to leave feedback about their experience
in our study. We identified two main themes: the virtual character’s
intelligence and how they enjoyed the virtual reality experience.

Most participants mentioned the differences in the virtual char-
acter’s intelligence. P6 wrote: “...I noticed that in the first two rounds
(with low intelligence), the other character was eager to complete
the puzzle but would put the pieces in the wrong places. She started
putting them in the correct places the last two rounds (with high
intelligence), which made us reach our goal easier.” P17 mentioned:
“In the beginning (with low intelligence and low task complexity), it
did not seem like the AI (virtual character) was functioning very well.
But then, as we went through the different levels, it became easier
to work with.” P24 reported: “1 and 2 (low intelligence conditions)
were very annoying to work with, but 3 and 4 (high intelligence
conditions) were extremely better.” P27 wrote: “When the virtual
person was functioning properly, I felt more of a joint effort. When

the virtual person was not helpful, it was so distracting, and I spent
more time fixing her issue than working on the task.”

Also, some participants expressed how they enjoyed our study.
P11 reported: “I really liked the experience. It was very interactive and
fun.” P6 mentioned: “This was very fun to do and a very interesting
experience...” P16 wrote: “This was interesting...” P20 reported: “I
liked this research experiment.” Finally, P7 wrote: “Super fun.”

5 Discussion
Our participants responded to the provided questionnaires, which
asked about their perceptions of virtual characters and user ex-
periences. The statistical analyses uncovered several interesting
findings, which we discuss in the following subsections.

5.1 Virtual Character’s Intelligence
We aimed our study to understand how the virtual character’s
intelligence and the task complexity impacted our participants’ per-
ceptions of the virtual character’s intelligence. We found significant
differences in the results of both perceived intelligence (RQ1.1)
and intelligence comparison (RQ1.2). These findings indicated that
perceived intelligence increased when the virtual character’s intel-
ligence possessed high value. These results align with our partici-
pants’ feedback, who mentioned that they noticed a difference in
the virtual characters’ intelligence in the experimental conditions.
Researchers have reported several factors of perceived intelligence,
such as anthropomorphism [Lee et al. 2015] or animacy [Bartneck
et al. 2009], and we think that the virtual character’s intelligence
can be another factor. However, we did not find significant results
from the complexity factor or intelligence×complexity interaction.
Thus, we cannot argue that these factors impact users’ perceptions
of the virtual character’s intelligence.

5.2 Perceptual Experience
To explore our participants’ perceptual experience from combina-
tions of the virtual character’s intelligence and task complexity, we
asked questions about perceived collaboration and contribution, as
well as public awareness of the virtual character. We found signifi-
cant results from perceived collaboration (RQ2.1). These findings
indicated that our participants felt they collaborated more when
either the virtual character was more intelligent or the task was
less complex. Similarly, based on the qualitative data, participants
reported a joint effort when the virtual character was assigned
high intelligence. According to Thomson et al. [Thomson et al.
2009], “trust is a central component of collaboration.” Based on this
premise, these findings agree with Huang et al. [Huang et al. 2021],
reporting their participants rated higher trust from interacting with
the high-ability robot and lower trust from complex tasks. We think
our participants felt the more intelligent virtual characters had a
higher capability to solve the puzzles, triggering higher ratings of
perceived collaboration.

In the case of perceived contribution (RQ2.2), we found a signif-
icant result reporting that our participants felt the virtual character
contributed more in the co-solving process when we exposed them
to higher intelligence conditions. This finding expands Lampe’s and
Chatila’s study [Lampe and Chatila 2006], stating mission success
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Table 2: Detailed results of our study for application logs (we present significant results with bold font).

Virtual Character Puzzle Goal Puzzle Pieces

𝑀 𝑆𝐷 𝑀𝑖𝑛 𝑀𝑎𝑥 𝑀 𝑆𝐷 𝑀𝑖𝑛 𝑀𝑎𝑥 𝑀 𝑆𝐷 𝑀𝑖𝑛 𝑀𝑎𝑥

LILC .13 .08 .02 .41 .01 .02 .00 .10 .11 .11 .00 .53
LIHC .11 .06 .04 .36 .02 .03 .00 .16 .10 .08 .01 .25
HILC .09 .04 .00 .20 .02 .03 .00 .14 .10 .08 .00 .26
HIHC .12 .05 .02 .33 .01 .02 .00 .09 .11 .09 .00 .35

Main Effect

Intelligence Complexity Gaze

𝐹 1.691 .982 .149
𝑝 .205 .498 <.001
𝜂2𝑝 .061 .018 .851

Interaction Effect

Intelligence×Complexity Intelligence×Gaze Complexity×Gaze Intelligence×Complexity×Gaze

𝐹 .866 .931 .956 .700
𝑝 .056 .410 .571 .011
𝜂2𝑝 .134 .069 .044 .300

Intelligence df = 1 (Error df = 26), Complexity df = 1 (Error df = 26), Gaze df = 2 (Error df = 25)
Intelligence×Complexity df = 1 (Error df = 26), Intelligence×Gaze df = 1 (Error df = 26)
Complexity×Gaze df = 1 (Error df = 26), Intelligence×Complexity×Gaze df = 2 (Error df = 25)

rate as a metric to evaluate the performance of robots by indicating
this metric can be applied to virtual characters.

We found significant results from public awareness of the virtual
character (RQ2.3). Based on our findings, we argue our participants
felt the virtual character was more aware when either the virtual
character was more intelligent or the task was less complex. These
findings agree with Hayes et al. [Hayes et al. 2016], reporting that
their participants assumed that a robot understood their instruction
until it made the first mistake. We think our participants thought a
more intelligent virtual character became more aware because it did
not make errors during co-solving puzzles. Additionally, these find-
ings build upon Ijaz et al.’s [Ijaz et al. 2011] study, which highlights
environmental understanding as crucial for the virtual character’s
awareness. Our results suggest that the virtual character’s intelli-
gence and task complexity can also enhance public awareness of
virtual characters.

Last, we did not find significant intelligence×complexity results
in all perceptual experience ratings. This indicates that the impact
of the virtual character’s intelligence on our participants’ percep-
tual experiences was consistent across all conditions. It also shows
that task complexity did not necessarily moderate how the vir-
tual character’s intelligence affected our participants’ perceptual
experiences.

5.3 User Experiences
We asked questions concerning attentional allocation, task load, and
frustration to explore how the virtual character’s intelligence and
task complexity impact our participants’ user experience. We did
not find significant results regarding attentional allocation (RQ3.1).
We argue that unlike threats, such as angry faces [Schrammel et al.

2009], the intelligence and task complexity did not trigger partici-
pants’ attentional allocation.

As for task load (RQ3.2), we found a significant result from in-
telligence, and this finding showed that our participants rated their
task load lower when they co-solved puzzles with more intelligent
virtual characters. This finding aligns with Rabby et al. [Rabby et al.
2019], which reported that lower robot performance increased par-
ticipants’ cognitive workload. Perhaps our participants felt there
was a need for more mental and physical demands when interacting
with a less intelligent virtual character because they needed to fix
all errors made by the virtual character. Furthermore, we found
an interaction effect on task load, reporting that our participants
experienced higher task load when interacting with a less intel-
ligent virtual character than a more intelligent one, even though
they co-solved the same puzzles. This finding shows that the virtual
character’s intelligence moderated how task complexity impacted
task load.

We also found a significant result from frustration (RQ3.3), and
this finding showed us that our participants becamemore frustrated
when they co-solved puzzles with less intelligent virtual charac-
ters. This finding is consistent with Myers et al. [Myers et al. 2018]
reporting that system errors in the voice user interface frustrated
their participants. We think our participants felt more frustrated
when they observed that the virtual character placed puzzle pieces
in the wrong spot. However, we could not find significant results
from either task complexity or the interaction effect of intelligence
and task complexity, so we cannot argue that task complexity im-
pacted our participants’ frustration during co-solving puzzles with
the virtual character.
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5.4 Confidence in Performance
We explored how our participants perceived confidence in them-
selves and the virtual character. We found significant results from
perceived self-confidence, indicating our participants felt more con-
fident (RQ4.1) from either their exposure to a more intelligent
virtual character or due to effortless task complexity. These find-
ings align with those of Rienovita et al. [Rienovita et al. 2017],
who stated that participants’ self-esteem was encouraged when
agents helped them. Our participants felt more confident when
co-solved the puzzle with a more intelligent virtual character be-
cause it helped them solve the puzzle, so our participants needed
less time to complete the task. This finding expands Huang et al.
[Huang et al. 2021], which reported that the study participants’ self-
construal was related to trust by indicating that task complexity
also discourages our participants’ self-confidence.

We also found significant results regarding the confidence of the
virtual character (RQ4.2). Our findings showed that participants
rated the virtual character’s confidence lower when they co-solved
puzzles with less intelligent virtual characters. This expands on
previous research by Thaler et al. [Thaler et al. 2020], which fo-
cused on the impact of walking motion on the virtual character’s
confidence, indicating that intelligence can also play a role. Addi-
tionally, we observed an interaction effect on the virtual character’s
confidence, revealing that participants felt more confident in the
virtual character when it was more intelligent, even when solving
the same puzzles. This suggests that the virtual character’s intelli-
gence had a more substantial influence on participants’ perception
of its confidence than task complexity. This finding is relatively
novel and contributes to the existing literature on the topic.

5.5 Gazing during Co-solving Process
We did not find significant results for the impact of virtual char-
acters’ intelligence and task complexity on our participants’ dwell
gazing patterns (RQ5.1). However, we found that our participants
gazed at the virtual character and puzzle pieces more than the puz-
zle goal. This finding aligns with Sidenmark and Lundström’s study
[Sidenmark and Lundström 2019] investigating the relationship
between hand and gaze behavior during hand interactions in a
virtual environment. They reported that interactions demanding
precision induced gaze fixation on the interacted object. Our par-
ticipants considered the puzzle pieces interactable objects, whereas
the puzzle goal was not. Furthermore, we expand Sidenmark and
Ludström’s study by indicating that interaction partners (the virtual
character) can be another factor inducing gaze fixation during hand
interactions.

5.6 Limitations
Designing and implementing a virtual reality experience to co-solve
jigsaw puzzles with intelligent virtual characters requires careful
consideration of various components. Although our participants did
not experience any issues during their virtual reality experiences,
we want to report several limitations. Note that these limitations
do not invalidate our findings but rather provide clues to improve
the virtual reality experience and directions for future studies.

First, we should consider more factors, such as puzzle piece dis-
tributions, in the design of task complexity. Although the difference

in task complexity between the experimental conditions was appar-
ent, we did not find a significant result concerning our participants’
frustration rating between conditions with low and high complexity
tasks. This suggests an improvement in our understanding of the
factors that are mandatory for designing the task complexity in the
co-solving puzzle process.

Second, in our application, we did not implement highly realistic
animations to our virtual character. The virtual character could
access any unsolved puzzle pieces on the table through an inverse
kinematics solver. However, the virtual character’s hand animations
for picking up and placing puzzle pieces were absent, making the
virtual character look less realistic. Integrating these animations
into the virtual character would make our participants’ virtual
reality experience more lifelike.

Third, the virtual character’s puzzle-solving behaviors were
driven by random variables rather than through a sophisticated
puzzle-solving strategy. The script randomly selected one from
the unsolved pieces as the targeted puzzle piece when the virtual
character accessed and picked up a puzzle piece. Additionally, the
virtual character randomly placed the puzzle pieces on the puzzle
board when solving it incorrectly. Due to these limitations, the
puzzle-solving behaviors of the virtual character might look less
human-like, potentially negatively impacting participants’ percep-
tions and user experiences.

Last, as we mentioned previously, our pseudo-gazing methodol-
ogy returned what was at the center of the participant’s perspective.
However, the collected data needed to be more precise to track what
participants gazed at and focused on during the co-solving process.
Thus, using other tools to track participants’ gaze, such as a high-
end eye-tracker, will help collect more accurate data and understand
participants’ co-solving activities.

5.7 Implications for Future Studies
Providing a cooperative atmosphere in collaborative interactions
between humans and virtual characters is necessary. According
to our results, the virtual character’s intelligence and task com-
plexity impacted the rating of perceived collaboration. Specifically,
the higher intelligence of the virtual character and low-complexity
task provided the highest rating of perceived collaboration. Thus,
we suggest the combination of more intelligent virtual characters
and less complex tasks when the purpose of the interaction be-
tween humans and virtual characters is to provide collaborative
experiences.

If the interaction’s priority is user experiences, it would be nec-
essary to prevent negative experiences. Our study indicated that
the lower intelligence of the virtual character triggered a higher
task load, more frustration, and less self-confidence. Therefore, to
improve user experiences, we recommend implementing highly
intelligent virtual characters when they are essential.

Finally, if enhancing the perception of the virtual character’s
supportiveness is deemed necessary, human perception of the vir-
tual character would be crucial. Our findings suggest that when
the virtual character displayed higher intelligence, participants felt
more confident in its abilities and perceived it as more intelligent,
contributing significantly to the puzzle-solving process. However,
task complexity did not affect participants contrary to the impact of
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the virtual character’s intelligence. Therefore, we assert that a more
intelligent virtual character can be perceived as more supportive,
irrespective of task complexity.

6 Conclusions and Future Work
Collaborating with intelligent virtual characters in virtual reality
has been explored from several perspectives concerning the de-
sign of interactions and capabilities of such characters. However,
although few studies have focused on task complexity, to our knowl-
edge, studies have yet to consider the impact of virtual character
intelligence and task complexity on human perceptions and user
experiences. Therefore, we explored how the virtual character’s
intelligence and task complexity affected our participants’ percep-
tions and user experiences. The statistical analyses revealed several
interesting main and interaction effects. Our findings indicated the
importance of the virtual character’s intelligence and task complex-
ity in human-agent interaction. Thus, this paper expands current
knowledge in human-agent interaction and provides guidelines for
improving collaborative interaction between humans and virtual
characters.

We identified several limitations in our study, which offer the
potential to enhance future studies. Based on these limitations, we
aim to investigate the design of task complexities further and extend
our research to related topics, such as task allocation. Moreover, we
will examine strategies of puzzle-solving processes and apply them
to the virtual character to explore how different strategies affect
human perception of the virtual character and user experiences.
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