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Although researchers have explored how humans perceive the intelligence of virtual characters, few studies have focused on
the ability of intelligent virtual characters to fix their mistakes. Thus, we explored the self-correction behavior of a virtual
character with different intelligence capabilities in a within-group design (# = 23) study. For this study, we developed a
virtual character that can solve a jigsaw puzzle whose self-correction behavior is controlled by two parameters, namely,
Intelligence and Accuracy of Self-correction. Then, we integrated the virtual character into our virtual reality experience
and asked participants to co-solve a jigsaw puzzle. During the study, our participants were exposed to five experimental
conditions resulting from combinations of the Intelligence and Accuracy of Self-correction parameters. In each condition,
we asked our participants to respond to a survey examining their perceptions of the virtual character’s intelligence and
awareness (private, public, and surroundings awareness) and user experiences, including trust, enjoyment, performance,
frustration, and desire for future interaction. We also collected application logs, including participants’ dwell gaze data,
completion times, and the number of puzzle pieces they placed to co-solve the jigsaw puzzle. The results of all the survey
ratings and the completion time were statistically significant. Our results indicated that higher levels of Intelligence and
Accuracy of Self-correction enhanced not only our participants’ perceptions of the virtual character’s intelligence, awareness
(private, public, and surroundings), trustworthiness, and performance but also increased their enjoyment and desire for future
interaction with the virtual character while reducing their frustration and completion time. Moreover, we found that as the
Intelligence and Accuracy of Self-correction increased, participants had to place fewer puzzle pieces and needed less time to
complete the jigsaw puzzle. Lastly, regardless of the experimental condition to which we exposed our participants, they gazed
at the virtual character for more time compared to the puzzle pieces and puzzle goal in the virtual environment.
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1 INTRODUCTION
Due to the democratization of virtual reality (VR) technologies, VR applications have gained unprecedented
popularity [68]. VR has been successfully used in domains including training [52, 98], education [1], and games
[51, 53]. In these domains, several applications allow VR users to interact with virtual characters [45, 47, 63–65, 92].
Specifically, virtual characters can observe and interact with virtual environments [100] and react to pre-defined
events [20, 54, 69]. They can also “understand” the context of situations [84] and collaborate with others to
achieve goals [5]. Furthermore, verbal or nonverbal communications [101] and emotional expressions [77, 92] are
simulated to enhance the realism of interactions with virtual characters. These abilities enable virtual characters
to deliver knowledge or information [16, 76] and collaborate with people to complete specific tasks [35, 51].

As virtual characters become more sophisticated, several researchers have explored how humans interact and
experience them. However, although virtual characters can be scripted to perform a given task efficiently (i.e., act
optimally and behave intelligently), exploring how human-like characteristics and behaviors can impact human
perceptions of virtual characters is also important. For example, understanding how humans perceive mistakes
made by virtual characters can help us further develop human-like intelligent virtual characters [36]. However,
although some work has been conducted to understand how humans perceive agents or robots when the latter
make grammatical mistakes [74, 87], malfunction [57], and perform unexpected movements [30], less attention
has been given to how the self-correction behavior of a virtual character (i.e., its ability to fix its own mistake)
could impact human perceptions of that virtual character.

To explore human perceptions of the self-correction behavior of a virtual character, we implemented a VR
application in which a user and a virtual character collaborate to solve a jigsaw puzzle, which has been considered
a cognitively demanding task identified by previously conducted research [29, 39]. The self-correction behavior
we implemented enabled the virtual character to become aware that a wrong action had been performed and
“self-correct” that action (i.e., the virtual character was scripted to pick up a wrongly placed puzzle piece and
place it in a new [either right or wrong] position on the puzzle board). To control the behavior of our virtual
character, we used two parameters, namely, Intelligence and Accuracy of Self-correction. The Intelligence parameter
denotes the probability of placing the puzzle piece in the correct spot. For example, the virtual character always
places the puzzle pieces correctly if we set Intelligence to 100%. The other parameter, Accuracy of Self-correction, is
the probability that the virtual character will fix its mistake correctly. When the virtual character has 0% Accuracy
of Self-correction, it always picks up its last wrongly placed puzzle piece but again places it in the wrong spot. In
contrast, when the virtual character has 100% Accuracy of Self-correction, it always places its last wrongly placed
puzzle piece in the correct spot.

In this project, we developed a virtual character programmed to assist study participants in co-solving a
jigsaw puzzle, with its actions guided by a user-defined probability of Intelligence and Accuracy of Self-correction
when placing the jigsaw puzzle pieces. Although the behavior of the virtual character might not entirely align
with conventional definitions of intelligence, we propose that it can still be regarded as “intelligent.” According
to Fissler et al. [29], solving jigsaw puzzles involves various cognitive skills, including visual perception for
recognizing shapes and patterns, constructional praxis for coordinating visual and motor information, mental
rotation for aligning pieces, and cognitive flexibility for adjusting strategies. Additionally, these tasks require
cognitive speed, perceptual reasoning for developing strategies, and working and episodic memory to keep track
of the associations between puzzle pieces. Given these demands, we argue that the virtual character’s ability to
address these cognitive challenges supports its classification as “intelligent.”

To explore how study participants perceived the virtual character when they were co-solving the jigsaw puzzle,
we conducted a within-group study (# = 23) and asked our participants to collaborate with the virtual character
and co-solve the jigsaw puzzle in each of the five experimental conditions we developed. Our experimental
conditions were the results of combining Intelligence and Accuracy of Self-correction parameters: 1) 0% Intelligence
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without Self-correction, 2) 0% Intelligence and 0% Accurate Self-correction, 3) 0% Intelligence and 50% Accurate
Self-correction, 4) 0% Intelligence and 100% Accurate Self-correction, and 5) 100% Intelligence without Self-
correction. For example, in the 0% Intelligence with 100% Accurate Self-correction condition, the virtual character
places the puzzle piece in the wrong spot on the board, then picks it up again and places it in the correct
spot. After finishing each condition, we asked participants to self-report their experience with the virtual
character by answering a survey. The survey comprised questions examining ten variables: perceived intelligence,
intelligence comparison (participants compared their intelligence against the virtual character’s intelligence),
virtual character’s private awareness, virtual character’s public awareness, virtual character’s surroundings
awareness, trust, performance, enjoyment, frustration, and desire for future interaction as well as an open-ended
question for our participants to provide additional feedback. We also collected application logs, including the
participants’ dwell gazing (virtual character, puzzle pieces, and puzzle goal), completion time, and the number of
puzzle pieces participants placed during co-solving the jigsaw puzzle.

We organized this paper as follows. In Section 2, we discuss work related to our project. In Section 3, we
present details of our implementation and methodology. In Section 4, we present our results, which are discussed
in Section 5, along with our study’s limitations. Finally, in Section 6, we draw conclusions and discuss potential
future work.

2 RELATED WORK

2.1 Human-Agent Interaction
Researchers in human-computer interaction have extensively studied how humans interact with computer
systems [38]. Human-agent interaction is an extension of human-computer interaction as it regards agents as
interactive systems. Numerous researchers have defined the concept of agents. Norman [72] described them
as “…forth images of human-like automatons, working without supervision on tasks thought to be for our
benefit, but not necessarily to our liking.” Lewis [50] also focused on automation as the concept of agents in
human-computer interaction. Based on these concepts, various agents, such as virtual agents or robots, exist
within the human-agent interaction research area.

Several researchers have investigated human-agent interaction using robots. Bradshaw et al. [10] referred to
the derivation of robots to describe agents. Burghart et al. [11] proposed an approach to train an anthropomorphic
robot to solve a jigsaw puzzle like a child with a tutor. They recorded a video of a child solving a jigsaw puzzle
with the tutor and converted it to an applicable format to train the robot. In the proposed approach, the trained
robot solved the jigsaw puzzle cooperatively based on human instruction or guidance. Giuliani and Knoll [32]
assigned instructive or supportive roles to robots in human-robot interaction to understand how people react.
They found that people did not prefer the robot to take either role and behaved as the counterpart of whichever
role it played.

Regarding virtual agents, Cerekovic et al. [14] integrated virtual characters to let participants interact with
them and analyzed the interaction through the perspective of personality traits and nonverbal cues. They built
regression models to predict interaction experiences and found that the best predictions could be made using both
personality traits and non-verbal cues. Morton and Jack [62] proposed a computer-assisted language learning
program with a virtual agent that spoke with users and gave feedback regarding grammatical and ungrammatical
utterances. The virtual agent reacted to the user’s speech and changed its dialog based on the communication
difficulties to support the user’s language learning. Furthermore, Cavazza et al. [13] proposed a prototype for
interactive storytelling based on user intervention. In their prototype, the user could interact with the virtual
agents, and this interaction affected the agents’ subsequent behaviors and triggered changes in the storyline.
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2.2 Collaboration with Virtual Agents
The Merriam-Webster dictionary defines collaboration1 as “working jointly with others or together, especially
in an intellectual endeavor.” Rickel and Johnson [78] used the term “collaboration” to describe agents helping
users learn given tasks and thus meet their objectives. Researchers have explored how people collaborate with
virtual agents. Andrist et al. [2] implemented a virtual agent that taught users the task of sandwich-making to
improve the user experience in human-agent interaction through producing and detecting gaze cues. The authors
found that the bidirectional gaze of the virtual character (producing its gaze and responding to the user’s gaze)
positively impacted the number of errors, and the virtual character’s response to the participant’s gaze improved
the degree of coordination during collaboration.

Collaborative virtual agents have also been applied to games. Merritt et al. [60] integrated an artificial agent
into a cooperative game to compare the users’ perception of the risk-taking action of different types of teammates,
and the artificial agent collaborated with players to win the game through risk-taking action. The authors found
that the players noticed more risk-taking actions when they thought about collaborating with humans than with
artificial intelligence. Daronnat [22] explored the human-agent trust relationship in collaborative games through
different aspects of agents, such as predictability or type of errors. The author stated that an error caused by the
agent’s inaction impacted trust and performance less negatively than planning or commission errors.

While the previously mentioned studies focused on human-agent interaction, other studies have considered
agent-agent interaction. Liu et al. [51] implemented collaboration between virtual agents driven by behavior
trees to measure the degree of collaboration in gameplay. Later, when Liu et al. evaluated their game levels, they
found a strong correlation between the degree of collaboration data provided by virtual agents and their study
participants. Cavazza et al. [13] described the interaction between agents as an intervention. Specifically, as
in a user intervention, one agent could interfere with other agents and affect the storytelling. Baker et al. [5]
presented a reinforcement learning algorithm to train virtual agents to play hide and seek cooperatively. They
indicated that collaborations between virtual agents were observed as a strategy for winning in team play.

2.3 Awareness in Human-Agent Interaction
Some studies on human-agent interaction have found that some virtual agents can detect the surrounding
environment, such as the progress of a task [16], and decide their subsequent behavior. These dynamically
allocated behaviors make the virtual agents look more aware. According to the Merriam-Webster dictionary,
awareness2 is “the quality or state of being aware: knowledge and understanding that something is happening or
exists,” and it has various targets.

Munir et al. [67] defined situational awareness as “the perception of entities in the environment, comprehension
of their meaning, and projection of their status in the near future.” Similarly, Livnat et al. [55] indicated that
situational awareness is “the ability to identify, process, and comprehend the critical elements of information
about what is happening.” Situational awareness can be applied to decision-making [55], such as remotely
controlling urban search and rescue robots [99]. Govern and Marsch [33] proposed the situational self-awareness
scale (SSAS), which comprises three types of awareness: private, public, and surroundings. The authors stated
that private awareness is related to attention to one’s inner feelings, public awareness is based on attention to
how one shows oneself to others, and surroundings awareness describes attention to the environment. Ijaz et al.
[41] defined three types of awareness (environment awareness, self-awareness, and interaction awareness) and
provided detailed information for all three types to implement an aware virtual agent. The authors found that
the aware virtual agent was more believable than the unaware one. Contrarily, the awareness target of virtual
agents can be the users. McNeely-White et al. [58] presented a virtual agent that was aware of aspects of the

1https://www.merriam-webster.com/dictionary/collaboration
2https://www.merriam-webster.com/dictionary/awareness
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users, such as gestures or gazes, through videos and depth sensors. They found that the shared perception and
user awareness of the virtual character made the user feel and interact with it as if it were a person. Furthermore,
Tan et al. [89] implemented a location-aware virtual character based on the locations of users and objects and
stated that people perceived higher presence and adaptivity from the location-aware virtual character than a
virtual character that was unaware of the location of users and objects.

2.4 Perceived Intelligence
Norman [72] used the term “intelligent” to describe “agents.” Numerous studies demonstrate that intelligence is
one of the main components of agents [5, 32, 59, 88, 90]. Perceived intelligence is humans’ perceptions of agents’
intelligence [66], and researchers have explored various factors that can affect it. Deshmukh et al. [24] focused on
the relationship between human perception and the understandability of robot gestures. They found a correlation
between perceived intelligence and understandability. Lee et al. [49] applied an anthropomorphic layer to a virtual
agent, showing that the virtual agent’s appearance positively affected perceived intelligence. They identified
that anthropomorphism due to a human-like appearance caused higher social presence and positively impacted
perceived intelligence. Choi et al. [17] explored the effect of virtual characters’ appearance and voice mismatch
on perceived intelligence and found that virtual characters with a robot-like appearance had a higher perceived
intelligence than those that looked like humans. Lastly, Bartneck et al. [6] explored the connection between a
robot’s perceived intelligence, animacy, and design and found a correlation between animacy and perceived
intelligence.

2.5 Self-Correction
Even if an intelligent virtual character is designed to perform tasks correctly, it is hard to guarantee that a virtual
character can treat all cases without errors. Thus, several researchers have studied how people perceive virtual
characters when they make mistakes. According to Wang et al. [94], even if virtual characters make errors such
as unresponsiveness, irrelevant responses, or other conversational mistakes, they can still provide social influence
and impact user interaction. However, according to Lucas et al. [56], such errors affect human task performance
and reduce a virtual character’s persuasive ability. In contrast, according to Skarbez et al. [83], there is a strong
correlation between error metrics and the perceived quality of interaction with the virtual character.

However, when a virtual character performs tasks incorrectly, it should be able to identify and correct its
mistakes, resulting in a self-correction behavior. Satne [82] presented three components of self-correction:
the application of concepts, the ability to evaluate the applications of concepts, and the modification of the
application of concepts based on the evaluation. Self-correction behaviors vary in terms of how the corrective
actions are applied. Lasecki and Bigham [48] researched how to leverage self-correction from crowds and
proposed two types of self-correction: averaging and voting. They found that self-corrections helped crowds
reach the appropriate correction before the final decision without the identification of invalid input. Ming et
al. [61] proposed a framework that enables robot self-correction. They used a perception detector to collect
environmental information and determine whether there were errors. Based on the decisions, the corrector
assigned appropriate feedback, such as high-level or low-level feedback, to correct the error. The authors applied
the framework to a robot in a real environment and showed its error detection and correction capacity. Such
findings highlight the need to conduct studies to understand how mistakes made by virtual characters could
impact human perceptions of and interactions with them.

2.6 Contributions
Researchers on human-agent interaction have extensively examined how virtual agents and robots collaborate
with humans, focusing on factors like awareness [67, 89], perceived intelligence [6, 17, 49], and user experience
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[2, 22, 60]. However, there is a lack of research specifically investigating how self-correction behaviors in virtual
characters impact these factors. Most studies have explored basic interaction dynamics and task performance
[10, 32, 62], but the effects of self-correction accuracy and intelligence remain underexplored [48, 61]. Our research
addresses this gap by examining how self-correction behavior influences perceived intelligence, awareness, user
experience, and behavioral responses, providing a more comprehensive understanding of effective human-virtual
character interactions.

Specifically, the contributions of our work are as follows. First, we introduce algorithms that control how a
virtual character could solve a jigsaw puzzle based on Intelligence and Accuracy of Self-correction parameters.
Second, we conducted a user study to understand further how the self-correction behavior of an intelligent virtual
character could impact humans’ perception of the virtual character and the user experience of the developed
application and task with which study participants were asked to interact. Lastly, we think our findings could help
researchers explore further how self-correction behavior can be implemented in intelligent virtual characters, an
underexplored research direction of the human-virtual character interaction field.

2.7 ResearchQuestions
We identified several research questions for our study to understand how a virtual character’s self-correction
behavior could impact participants’ perceptions of the virtual character as well as their experiences as users.
Specifically, we examine four research questions:

• Intelligence: This research question explores how participants perceive the intelligence of a virtual
character when it exhibits self-correction behaviors. It includes investigating subjective perceptions of
intelligence and comparative ratings when we asked our participants to evaluate the virtual character’s
intelligence.
– RQ1: How do the self-correction behaviors of a virtual character impact participants’ perceptions

and comparative ratings of that virtual character’s intelligence?
• Awareness: This research question delves into how self-correction behaviors influence participants’

views on the virtual character’s awareness. It covers: (1) Private Awareness, the perception of the virtual
character’s self-awareness or internal state; (2) Public Awareness, the perception of the virtual character’s
awareness of others and social contexts; and (3) Surroundings Awareness, the perception of the virtual
character’s awareness of the physical environment and situational context.
– RQ2: How do the self-correction behaviors of a virtual character impact participants’ perceptions of

the virtual character’s awareness in various contexts?
• User Experience:This research question assesses the overall user experience when interacting with a self-

correcting virtual character. Key aspects include: (1) Trust, the level of trust participants have in the virtual
character; (2) Performance, how well participants perform tasks in conjunction with the virtual character;
(3) Enjoyment, the degree of enjoyment participants experience during the interaction; (4) Frustration, the
amount of frustration felt by participants; and (5) Desire for Future Interaction, participants’ willingness
to engage with the virtual character again in the future.
– RQ3:How do the self-correction behaviors of a virtual character impact participants’ user experience,

including trust, performance, enjoyment, frustration, and willingness to interact in the future?
• Behavioral Responses: This research question focuses on the observable behavioral responses of

participants. It includes: (1) Dwell Gazes, where participants focus their gaze, specifically on the virtual
character, the puzzle goal, and the puzzle pieces; (2) Task Completion Times, how quickly participants
complete tasks when interacting with the self-correcting virtual character; and (3) Number of Puzzle
Pieces, how many puzzle pieces participants placed on the puzzle board to solve the jigsaw puzzle.
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– RQ4: How do the self-correction behaviors of a virtual character impact participants’ behavioral
responses, including gaze patterns, task completion times, and the number of puzzle pieces they
place when co-solving the jigsaw puzzle?

3 MATERIALS AND METHODS

3.1 Participants
We conducted an a priori power analysis using the G*Power version 3.1 software [27] to determine the appropriate
sample size for our study. For an 80% power (1-V error probability), a small effect size of 5 = .25 [18], one group
with five repeated measures, a nonsphericity correction n = .90, and an U=.05, the analysis recommended a
minimum of 22 participants. We recruited 23 participants (age: " = 23.82, (� = 4.26) through emails sent to
our university’s students and class announcements. All of our participants were undergraduate and graduate
students at a Midwest U.S. university. Of the sample, 15 were males (age: " = 24.60, (� = 4.35), and eight were
females (age: " = 22.37, (� = 3.92). All participants had prior VR experience.

3.2 Implementation
We developed a VR jigsaw puzzle application in the Unity game engine version 2020.3.20. We used Meta’s Quest
1 as a VR head-mounted display (HMD) and a Dell Alienware Aurora R7 desktop computer with Intel Core
i7, NVIDIA GeForce RTX 2080, and 32GB RAM for the implementation of our application and study. Our VR
application comprises a virtual environment (see Fig. 1), an intelligent virtual character (see Fig. 2), a dialog
manager, and user interaction tools.

Fig. 1. We designed a semi-realistic living room as the virtual environment where we immersed the participants in our study.

3.2.1 Virtual Environment. The virtual environment of our application was a semi-realistic living room 3D
model (see Fig. 1). In the living room, we added furniture and appliances to provide a cozy atmosphere for the
participants. Both the virtual character and participant sat on chairs around the table. We applied an L-shaped
formation (see Fig. 2) from the F-formations models to support social interaction between the participant and
the virtual character [75]. Thus, the participants could see the virtual character sitting to their right. We want to
note that in our study, we used a female virtual character in all conditions to standardize the stimulus across all
participants.

We placed all the puzzle pieces, the puzzle board, and the puzzle targets on the table. During our application’s
development and testing process, we conducted a preliminary study with our lab members to explore the
application’s flow, identify bugs, and determine the optimal number and size of puzzle pieces to eliminate any
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Fig. 2. We applied an L-shaped formation to support social interaction between the participant and the virtual character.
The virtual character is on the participant’s right side.

negative effects on participants’ experiences during the study. We realized that fewer pieces (25 in our case)
would make the jigsaw puzzle co-solving process more efficient, while more pieces would frustrate participants.
In total, our puzzle was composed of 25 puzzle pieces, each one 4× 4 cm in size. If we had too many puzzle pieces,
this would significantly increase the duration of the experiment and might cause fatigue and loss of motivation
among participants. We used a semi-transparent puzzle board to help the participants find the appropriate spot
to place each puzzle piece, and the initial distributions of puzzle pieces remained consistent across all conditions
(see Fig. 3).

Fig. 3. Left: The size of a puzzle piece. Right: All (25 total) puzzle pieces and the semi-transparent puzzle board.
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3.2.2 The Intelligent Virtual Character. Our intelligent virtual character can co-solve the puzzle with the partici-
pant. We implemented and assigned brain and animation systems to make our virtual character capable of solving
the jigsaw puzzle (see Fig. 4) and correcting its mistakes (see Fig. 5). We want to note that the virtual character
was not scripted to correct potential mistakes made by participants; however, the participants were able to fix
the mistakes made by the virtual character. For the brain system, we integrated the Intelligence and Accuracy
of Self-correction parameters. The brain system decides the state and behavior of the virtual character, and the
animation system animates the virtual character according to the decision of the brain system. We provide a
video as supplementary material that demonstrates the behaviors of our virtual character.

Fig. 4. The virtual character picks a puzzle piece and places it in a spot on the puzzle board. The brain system decides which
puzzle piece the virtual character picks up and where the virtual character places it.

Fig. 5. An example of the self-correction behavior. The virtual character picks the last interacted puzzle piece and places it in
the right spot. The red circle (left) shows the wrong puzzle piece, and the blue circle (right) shows the corrected one.

Brain System. The brain system (see Algorithm 1) controls how our virtual character solves the puzzles based
on the user-defined Intelligence and Accuracy of Self-correction parameters. These parameters allow the virtual
character to pick up a puzzle piece, place it in the right or wrong target spot, and trigger the self-correction
behavior if required. We want to note that we did not implement a turn-taking mechanism for our virtual character
to solve the jigsaw puzzle, as jigsaw puzzles are not considered turn-based games like chess or backgammon.
Thus, the virtual character did not wait for the participant to place puzzle pieces.
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The brain system has eight inputs: ', * , % , � , �, �, + , +; , and ( . ' is a list of puzzle targets not yet solved, *
is a list of puzzle pieces that can be picked up, % is a list of pairs of puzzle pieces and their answers, � is the
virtual character’s Intelligence with a range from 0% to 100%, � is a Boolean value to indicate the availability
of self-correction, � is Accuracy of Self-correction with a range from 0% to 100%, + is the current puzzle piece
interacted with by the virtual character, +; is the last puzzle piece interacted with by the virtual character,
and ( is the virtual character’s current state. Specifically, the brain system has a set of pre-defined S: %82:*?

(see Algorithm 2), %;024 (see Algorithm 3), (4; 5 �>AA42C8>=%82:*? (see Algorithm 4), (4; 5 �>AA42C8>=%;024 (see
Algorithm 5), and,08C .

Algorithm 1 Brain System State Decision Algorithm
Input:
' ∈ {'1, · · · , '; } ⊲ ' is a list of puzzle targets not yet solved
* ∈ {*1, · · · ,*<} ⊲ * is a list of puzzle pieces that can be picked up
% ∈ {

(
G1, G

0
1

)
, · · · ,

(
G=, G

0
=

)
} ⊲ % is a list of pairs of puzzle pieces and their answers

� ⊲ � is the virtual character Intelligence (0% - 100%)
�, ⊲ � is a Boolean value to indicate the availability of self-correction
�, ⊲ � is Accuracy of Self-correction (0% - 100%)
+ , ⊲ + is the current puzzle piece interacted with by the virtual character
+; , ⊲ +; is the last puzzle piece interacted with by the virtual character
( , ⊲ ( is the virtual character’s current state
Output:
+D ⊲ +D is the updated current puzzle piece interacted with by the virtual character
+;D ⊲ +;D is the updated last puzzle piece interacted with by the virtual character
(D ⊲ (D is the virtual character’s updated state
1: function BrainSystem(',* , % , � , �, �, + , +; , ()
2: switch ( do
3: case %82:*?

4: +D , (D ← PickUp(* )
5: case %;024
6: +D , +;D , (D ← Place(', % , � , + , �)
7: case (4; 5 �>AA42C8>=%82:*?

8: +D , (D ← SelfCorrPickUp(+; )
9: case (4; 5 �>AA42C8>=%;024

10: +D , (D ← SelfCorrPlace(', % , �, + )
11: case,08C

12: if* > 0 then
13: (D ← %82:*?

14: end if
15: return +D , (D
16: end function

Behavior Functions. Each state, except the,08C , includes an assigned function that decides how the virtual
character behaves with the puzzle piece with which it currently interacts and updates the virtual character’s
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state and that puzzle piece. The brain system has four behavior functions: PickUp, Place, SelfCorrPickUp, and
SelfCorrPlace. The PickUp function belongs to the %82:*? state, chooses a puzzle piece from* , and makes the
virtual character pick it up. However, if there is no available puzzle piece, the state goes to the,08C state, and
the virtual character waits until there is at least one available puzzle piece. The Place function belongs to the
%;024 state and lets the virtual character place the puzzle piece in a specific spot. Specifically, if the brain system
does not allow the virtual character to perform its self-correction, the target spot is decided by � . Otherwise, the
virtual character will place the puzzle piece incorrectly. Moreover, the Place function decides the following states
according to �. If � is true, the next state will be the (4; 5 �>AA42C8>=%82:*? state. Otherwise, it will be the %82:*?

state. The SelfCorrPickUp function belongs to the (4; 5 �>AA42C8>=%82:*? state. It has a fixed input, namely, the
last puzzle piece interacted with, to allow the virtual character to pick up the last puzzle piece interacted with for
the self-correction behavior. It also has a fixed update of the state, the (4; 5 �>AA42C8>=%;024 state, to complete the
self-correction behavior. Lastly, the SelfCorrPlace function belongs to the (4; 5 �>AA42C8>=%;024 state. It chooses
the spot where the puzzle price should be placed by � instead of � , and the virtual character places the puzzle
piece to fix its previous mistake. It updates the state to the %82:*? state to let the virtual character solve the
puzzle continuously. Note that the local variable ) is the target spot where the puzzle piece should be placed,
� is a random variable between 0% and 100% to determine the behavior based on Intelligence or Accuracy of
Self-correction, and + 0 is the correct spot of + mapped by % .

Algorithm 2 Virtual Character Pick Up Puzzle Algorithm
Input:
* ∈ {*1, · · · ,*<} ⊲ * is a list of puzzle pieces that can be picked up
Output:
+D ⊲ +D is the updated current puzzle piece interacted with by the virtual character
(D ⊲ (D is the virtual character’s updated state
1: function PickUp(* )
2: if* > 0 then
3: Choose ) from* Randomly
4: Pick up )
5: +D ← )

6: (D ← %;024

7: else
8: (D ←,08C

9: end if
10: return +D , (D
11: end function

Animation System. As the brain system decides the state of the virtual character, the animation system controls
the latter’s movement. We implemented the full-body forward and backward inverse kinematic (FABRIK) solver
[3] to allow the virtual character to perform picking and placing tasks. During the puzzle-solving process,
the system is given the chosen puzzle piece or target spot as input, which drives the end-effector (the virtual
character’s right arm) to reach the target spot. Because the end-effector is connected with the upper body of the
virtual character, the inverse kinematics solver controls and animates the virtual character’s upper body parts
(i.e., shoulders and spine).

We also implemented gaze targets. Specifically, we scripted the virtual character to coordinate its gaze with its
right hand while trying to pick up and place the chosen puzzle piece (it moves its head to gaze at its right hand
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Algorithm 3 Virtual Character Place Puzzle Algorithm
Input:
' ∈ {'1, · · · , '; } ⊲ ' is a list of puzzle targets not yet solved
% ∈ {

(
G1, G

0
1

)
, · · · ,

(
G=, G

0
=

)
} ⊲ % is a list of pairs of puzzle pieces and their answers

� ⊲ � is the virtual character Intelligence (0% - 100%)
+ ⊲ + is the current puzzle piece interacted with by the virtual character
� ⊲ � is a Boolean value to indicate the availability of self-correction
Output:
+D ⊲ +D is the updated current puzzle piece interacted with by the virtual character
+;D ⊲ +;D is the updated last puzzle piece interacted with by the virtual character
(D ⊲ (D is the virtual character’s updated state
1: function Place(', % , � , + , �)
2: if � then
3: while ) = + 0 do
4: Choose ) from ' Randomly
5: end while
6: (D ← (4; 5 �>AA42C8>=%82:*?

7: else
8: Choose � from 0% to 100% Randomly
9: if � ≤ � then

10: Choose ) as + 0 from % by using +
11: else
12: while ) = + 0 do
13: Choose ) from ' Randomly
14: end while
15: end if
16: (D ← %82:*?

17: end if
18: Place + on the )
19: +;D ← +D
20: +D ← #*!!

21: return +D , +;D , (D
22: end function

when performing the pick-it-up animation). In addition, we implemented eye-blink animation and assigned an
idle motion with a sitting pose to make our virtual character’s movements look more realistic.

3.2.3 Dialog Manager. We implemented a conversational virtual character [93] controlled by a dialog manager to
provide pre-defined dialogs in our VR jigsaw puzzle application. It provides dialogs in three phases: the beginning,
middle, and end of the VR experience. Each dialog included a set of pre-defined answers. The dialog manager
detects the progress of solving the puzzle by detecting the number of unsolved puzzle pieces. More specifically,
the first dialog phase is generated when all puzzle pieces are unsolved, the second dialog phase is generated when
half are unsolved, and the last phase is generated when there are no unsolved puzzle pieces. We used Microsoft’s
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Algorithm 4 Virtual Character Self Correction Pick Up Puzzle Algorithm
Input:
+; ⊲ +; is the last puzzle piece interacted with by the virtual character
Output:
+D ⊲ +D is the updated current puzzle piece interacted with by the virtual character
(D ⊲ (D is the virtual character’s updated state
1: function SelfCorrPickUp(+; )
2: Choose ) from +;
3: Pick up )
4: +D ← )

5: (D ← (4; 5 �>AA42C8>=%;024

6: return +D , (D
7: end function

Algorithm 5 Virtual Character Self Correction Place Puzzle Algorithm
Input:
' ∈ {'1, · · · , '; } ⊲ ' is a list of puzzle targets not yet solved
% ∈ {

(
G1, G

0
1

)
, · · · ,

(
G=, G

0
=

)
} ⊲ % is a list of pairs of puzzle pieces and their answers

� ⊲ � is Accuracy of Self-correction (0% - 100%)
+ ⊲ + is the current puzzle piece interacted with by the virtual character
Output:
+D ⊲ +D is the updated current puzzle piece interacted with by the virtual character
(D ⊲ (D is the virtual character’s updated state
1: function SelfCorrPlace(', % , �, + )
2: Choose � from 0% to 100% Randomly
3: if � ≤ � then
4: Choose ) as + 0 from % by using +
5: else
6: while ) = + 0 do
7: Choose ) from ' Randomly
8: end while
9: end if

10: Place + on the )
11: +D ← #*!!

12: (D ← %82:*?

13: return +D , (D
14: end function

Azure3 text-to-speech service to generate the dialogs and the SALSA LipSync Suite4 from Unity Asset Store
to synthesize the lip-sync animation. Additionally, we assigned humming to the virtual character in randomly
chosen time steps to make participants think that the virtual character was thinking about its decisions. We did
3https://azure.microsoft.com/en-us/products/cognitive-services/text-to-speech
4https://assetstore.unity.com/packages/tools/animation/salsa-lipsync-suite-148442
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so because prior studies have shown that dialogs provided more engaged experiences [28], trust, and rapport
[8, 42].

3.2.4 User Interaction Tool. We used the Oculus Integration Toolkit to support user interaction in the VR jigsaw
puzzle experience. It provided simulated hand models based on the input signals from controllers, and the
simulated hands helped the user grab the puzzle piece and place it on the puzzle board or table through natural
gestures. The toolkit also supported user interface (UI) interaction based on ray casting, so users could point to
UI components directly and interact with them, such as clicking the button or moving the slide. In our VR puzzle
co-solving experience, we used the UI interface to let participants choose and answer from the implemented
dialogues.

3.3 Experimental Conditions
We designed five experimental conditions to explore how self-correction behaviors controlled by Intelligence
and Accuracy of Self-correction parameters affect users’ perceptions and experiences. For our study, we used a
within-group design to let participants make direct comparisons across the five experimental conditions. We
examined the following conditions:

• 0% Intelligence without Self-correction (LI): In this condition, we assigned a 0% probability of solving
the puzzle and disabled self-correction behavior. The virtual character always places a puzzle piece in the
wrong spot on the puzzle board and does not correct it later, thus not contributing to solving the puzzle.
• 0% Intelligence with 0%Accurate Self-correction (LSC): In this condition, we assigned a 0% probability

of solving the puzzle and a 0% probability of fixing the previous error. Hence, the virtual character always
places a puzzle piece in the wrong spot on the puzzle board; then, the virtual character tries to correct
the previous mistake by picking it up from the puzzle board, but it again places it in the wrong spot. As
before, the virtual character does not contribute to solving the puzzle at all.
• 0% Intelligence with 50% Accurate Self-correction (MSC): In this condition, we assigned a 0%

probability of solving the puzzle and a 50% probability of fixing the previous error. Hence, the virtual
character always places a puzzle piece in the wrong spot on the puzzle board; then, the virtual character
tries to correct its previous mistake, but half of the time, it places the puzzle piece in the wrong spot (the
other half of the fixes are correct). In this condition, the virtual character can contribute up to 50% to
solving the puzzle.
• 0% Intelligence with 100% Accurate Self-correction (HSC): In this condition, we assigned a 0%

probability of solving the puzzle and a 100% probability of fixing the previous mistake. Hence, the virtual
character always places a puzzle piece in the wrong spot on the puzzle board; then, the virtual character
tries to correct its previous mistake and always places the puzzle piece in the right spot. In this condition,
the virtual character can contribute up to 100% to solving the puzzle.
• 100% Intelligence without Self-correction (HI): In this condition, we assigned a 100% probability

of solving the puzzle and disabled self-correction behavior. Hence, the virtual character always places
a puzzle piece on the right spot of the puzzle board, and it does not self-correct. In this condition, the
virtual character can contribute up to 100% to solving the puzzle.

Although we could have had other conditions with different combinations of Intelligence and Accuracy of
Self-correction, we limited the number of conditions in case the participants lost interest and thought the VR
experience was tedious. We want to note that our conditions were inspired by Sarkar et al. [81], who implemented
and explored interaction with three conditions of a faulty robot and one condition of a non-faulty robot. However,
we extended Sarkar et al.’s schema by implementing conditions that cover the continuum between a faulty (0%
Intelligence without Self-correction) and non-faulty (100% Intelligence without Self-correction) virtual character
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while also encountering self-correction behavior. Lastly, we would like to mention that we used Latin squares
[95] to balance the conditions and eliminate first-order carry-over (residual) effects.

3.4 Ratings and Measurement
We collected questionnaire responses as subjective data and application logs as objective data to understand how
a virtual character’s self-correction behavior affects users’ perceptions and experiences.

3.4.1 Survey. We developed a survey to understand how the self-correction behavior of a virtual character
affects users’ perceptions and experiences. The survey comprised 21 items that examined ten variables: perceived
intelligence, intelligence comparison, virtual character’s awareness (private awareness, public awareness, and
surroundings awareness), trust, performance, enjoyment, frustration, and desire for future interaction. The items
for the perceived intelligence were taken from Moussawi and Koufaris [66], and we used them to understand
how our study participants perceived the intelligence of the virtual character through the different conditions
we implemented. The awareness scales (private awareness, public awareness, and surroundings awareness)
were taken from Govern and Marsch [33] and were used to understand if the virtual character is aware of the
mistakes, it would make our participants rate the virtual character’s awareness higher. We adopted the items of
the trust scale from the System Trust Scale (STS) developed by Jian et al. [43]. We developed all the other items
(intelligence comparison, performance, enjoyment, frustration, and desire for future interaction) ourselves. We
used a 7-point Likert scale for the questionnaire responses. We provided the questionnaire after each condition
and asked participants to give feedback about their experience when the experiment was finished. We distributed
the survey and feedback form using the Qualtrics online survey tool. We provide the survey we developed for
our study in Table A1 in Appendix A.

3.4.2 Application Logs. We collected data from our VR jigsaw puzzle application to understand how participants
interact with the virtual character. Specifically, we collected:

• Virtual Character Dwell Gazing: We measured (normalized time) how long a participant gazed at the
virtual character’s upper body (including face, arms, and torso) while solving the puzzle.
• Puzzle Goal Dwell Gazing: We measured (normalized time) how long a participant gazed at the puzzle

goal while solving the jigsaw puzzle.
• Puzzle Pieces Dwell Gazing:We measured (normalized time) how long a participant gazed at the puzzle

pieces while solving the jigsaw puzzle.
• Completion Time: We measured (in seconds) how much time our participants needed to co-solve the

jigsaw puzzle with the virtual character.
• Number of Puzzle Pieces:We counted the number of puzzle pieces our participants placed on the puzzle

board to co-solve the jigsaw puzzle with the virtual character.

We assessed participants’ visual attention by projecting a ray from the position of the HMD in the direction of
their view into the virtual environment. If the projected ray intersected with a geometry model in the environment,
this information was recorded for subsequent analysis. This approach to determining visual attention underwent
scrutiny before the main experiment. We conducted a preliminary study with two lab members, during which
they consistently focused on objects. Our method was able to detect their gazes accurately. Additionally, we want
to note that researchers have documented the successful implementation of categorizing visual interest through
analysis of HMD position and viewpoint in peer-reviewed publications [12, 40, 92]. In the study, the duration (in
milliseconds) of this collision was returned when the ray collided with an object or the virtual character. After
the participant had solved the puzzle, the visual attention method returned measured time with a name tag so we
could track participants’ perspectives and how they interacted.
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3.5 Procedure
When a participant arrived at our research lab for this study, the research team provided the consent form with
key information about the experiment procedure. After participants signed the consent form, they proceeded to
the next part of our study. Our university’s Institutional Review Board (IRB) approved our study and consent
form. After completing the demographics questionnaire, participants put on the VR HMD and started the tutorial
scene. The tutorial aimed to familiarize participants with grabbing and placing puzzle pieces in our VR puzzle
game. We implemented this tutorial as a prior study showed that VR tutorials improve study participants’ user
experiences and performances [44]. The tutorial scene took place in the same virtual environment, but there was
no virtual character, and the puzzle pieces were different than those used in the main study. Instead, there were
four puzzle pieces and an instruction window. The tutorial provided two tasks through the instruction window:
picking up and placing the puzzle pieces in the right spot and fixing wrongly placed puzzle pieces.

When the participant had completed the tutorial, the research team ran the VR puzzle application with a
specified sequence based on the Latin squares [95] ordering method. While the participant was solving the puzzle,
the research team provided no information, such as whether the virtual character would fix its mistake. We also
did not provide specific guidelines to our participants on how to complete the task (e.g., to complete it as soon as
possible). Once the participants had completed the given condition, the research team asked them to take off the
VR HMD and answer the questionnaire on Qualtrics on a desktop computer. At the end of each condition, the
research team asked whether the participant wanted an additional break before starting the following condition.
This process was repeated for each condition.

After completing all conditions, the research team asked the participants to leave feedback about their overall
experience or other comments they thought might be useful. At that point, the research team provided answers
to the participants’ questions, such as details of the study, and asked the participants about their user experiences.
None of our participants dropped out and needed less than one hour to complete the study.

4 RESULT
For our statistical analyses, we used the self-reported ratings, the completion time, and the number of puzzle
pieces of the logged data as dependent variables and the five experimental conditions as independent variables
(see Section 3.3 for the experimental conditions). We analyzed the previouslymentioned data with one-way
repeated measures analysis of variance (ANOVA) with post hoc Bonferroni correction for multiple comparisons.
We analyzed the gaze data using a two-way repeated measures ANOVA with post hoc Bonferroni correction
following a 5 (Conditions: LI vs. LSC vs. MSC vs. HSC vs. HI)×3 (Gazes: virtual character [VC] vs. puzzle pieces
[PP] vs. puzzle goal [PG]) factorial design. The normality assumptions were validated with Q-Q plots of the
residuals.

4.1 Self-Reported Ratings
We provide descriptive statistics of our self-reported ratings and the patterns of difference across the examined
conditions for each measurement in Table 1.

Perceived Intelligence: We found a significant effect of the self-correction behavior (Wilks’ Λ = .161, � [4, 19] =
24.807, [2? = .839, ? = .000) across the five conditions. The post hoc pairwise comparison indicated that in the
LI condition (" = 2.16, (� = .30), our participants rated the virtual character’s perceived intelligence lower
than in the MSC condition (" = 3.70, (� = .30; ? = .000), HSC condition (" = 4.78, (� = .24; ? = .000), and
HI condition (" = 5.76, (� = .17; ? = .000). Moreover, participants in the LSC condition (" = 2.64, (� = .29)
rated the virtual character’s perceived intelligence significantly lower than in the MSC condition (? = .011), HSC
condition (? = .000), and HI condition (? = .000). Participants in the MSC condition rated the virtual character’s
perceived intelligence significantly lower than in the HSC condition (? = .011) and HI condition (? = .000).
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Table 1. Descriptive statistics of perceived intelligence, intelligence comparison, virtual character’s awareness (private,
public, and surroundings), trust, performance, enjoyment, frustration, and desire for future interaction. We report the Mean
("), Standard Deviation ((�), Minimum ("8=), Maximum ("0G), and patterns of differences. LI: 0% Intelligence without
Self-correction, LSC: 0% Intelligence with 0% Accurate Self-correction, MSC: 0% Intelligence with 50% Accurate Self-correction,
HSC: 0% Intelligence with 100% Accurate Self-correction, and HI: 100% Intelligence without Self-correction.

Perceived Intelligence Intelligence Comparison

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 2.16 .30 1.00 7.00 (LI, LSC) < MSC < HSC < HI LI 1.35 .18 1.00 5.00 LI < (HSC, HI)

LSC 2.64 .29 1.00 6.00 LSC 1.17 .10 1.00 3.00 LSC < (MSC, HSC, HI)

MSC 3.70 .30 1.33 6.17 MSC 1.96 .23 1.00 5.00 (MSC,HSC) < HI

HSC 4.78 .24 2.00 7.00 HSC 2.78 .35 1.00 6.00

HI 5.76 .17 4.17 7.00 HI 3.83 .38 1.00 7.00

Private Awareness Public Awareness

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 2.02 .30 1.00 6.00 (LI, LSC) < (MSC, HSC) < HI LI 1.76 .26 1.00 5.50 LI < (MSC, HSC) < HI

LSC 2.24 .25 1.00 6.00 LSC 2.17 .26 1.00 5.00 LSC < (HSC, HI)

MSC 3.37 .32 1.00 6.00 MSC 3.02 .32 1.00 6.00

HSC 3.70 .31 1.00 7.00 HSC 3.33 .32 1.00 6.50

HI 4.72 .32 1.50 7.00 HI 4.20 .35 1.00 7.00

Surrondings Awareness Trust

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 2.13 .32 1.00 7.00 (LI, LSC) < (MSC, HSC, HI) LI 2.17 .23 1.00 5.50 LI < (MSC, HSC) < HI

LSC 2.35 .32 1.00 7.00 LSC 2.48 .22 1.00 5.00 LSC < HSC < HI

MSC 3.46 .36 1.00 6.00 MSC 3.21 .21 1.00 4.75

HSC 3.74 .41 1.00 7.00 HSC 3.49 .24 1.00 5.50

HI 4.33 .37 1.00 7.00 HI 4.33 .28 1.50 7.00

Performance Enjoyment

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 1.52 .20 1.00 5.00 (LI, LSC) < MSC < HSC < HI LI 2.39 .41 1.00 7.00 (LI, LSC) < (MSC, HSC, HI)

LSC 1.83 .22 1.00 5.00 LSC 2.48 .36 1.00 7.00 MSC < HI

MSC 3.22 .30 1.00 6.00 MSC 4.09 .42 1.00 7.00

HSC 4.57 .26 2.00 7.00 HSC 5.04 .35 1.00 7.00

HI 6.00 .19 4.00 7.00 HI 5.30 .28 3.00 7.00

Frustration Desire for Future Interaction

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 5.22 .42 1.00 7.00 (HSC, HI) < LI LI 2.48 .41 1.00 7.00 (LI, LSC) < (MSC, HSC) < HI

LSC 5.39 .35 1.00 7.00 (MSC, HSC, HI) < LSC LSC 2.35 .36 1.00 7.00

MSC 3.70 .42 1.00 7.00 HI < MSC MSC 4.00 .40 1.00 7.00

HSC 3.09 .38 1.00 7.00 HSC 4.65 .37 1.00 7.00

HI 1.87 .28 1.00 6.00 HI 5.70 .24 3.00 7.00
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Additionally, participants in the HSC condition rated the virtual character’s perceived intelligence lower than in
the HI condition (? = .005). However, our participants did not report a significant difference between the LI and
LSC conditions (? = .150).

Intelligence Comparison: The statistical analysis revealed a significant effect of the self-correction behavior
(Wilks’ Λ = .290, � [4, 19] = 11.614, [2? = .710, ? = .000) across the five conditions. The post hoc pairwise
comparison indicated that participants in the LI condition (" = 1.35, (� = .18) rated their intelligence comparison
lower than in the HSC condition (" = 2.78, (� = .35; ? = .021) and HI condition (" = 3.83, (� = .38; ? = .000).
Moreover, participants in the LSC condition (" = 1.17, (� = .10) rated their intelligence comparison significantly
lower than in the MSC condition (" = 1.96, (� = .23; ? = .022), HSC condition (? = .002), and HI condition
(? = .000). Participants in the MSC condition rated their intelligence comparison lower than in the HI condition
(? = .000). Additionally, participants in the HSC condition rated their intelligence comparison lower than in the
HI condition (? = .017). However, we did not find a significant difference between the LI and LSC conditions
(? = 1.000), and between the MSC and HSC conditions (? = .166).

Virtual Character’s Private Awareness: There was a significant effect of the self-correction behavior (Wilks’
Λ = .260, � [4, 19] = 13.492, [2? = .740, ? = .000) across the five conditions. The post hoc pairwise comparison
indicated that participants in the LI condition (" = 2.02, (� = .30) rated their virtual character’s private
awareness lower than in the MSC condition (" = 3.37, (� = .32; ? = .017), HSC condition (" = 3.70, (� = .31;
? = .001), and HI condition (" = 4.72, (� = .32; ? = .000). Participants in the LSC condition (" = 2.24, (� = .25)
rated their virtual character’s private awareness lower than in the MSC condition (? = .010), HSC condition
(? = .001), and HI condition (? = .000). Moreover, participants in the MSC condition rated their virtual character’s
private awareness lower than in the HI condition (? = .019). Additionally, participants in the HSC condition rated
their virtual character’s private awareness lower than in the HI condition (? = .029). However, we did not find a
significant difference between the LI and LSC conditions (? = 1.000), and between the MSC and HSC conditions
(? = 1.000).

Virtual Character’s Public Awareness: We found a significant effect of the self-correction behavior (Wilks’
Λ = .281, � [4, 19] = 12.166, [2? = .719, ? = .000) across the five conditions. The post hoc pairwise comparison
indicated that participants in the LI condition (" = 1.76, (� = .26) rated their virtual character’s public awareness
lower than in the MSC condition (" = 3.02, (� = .32; ? = .003), HSC condition (" = 3.33, (� = .32; ? = .000),
and HI condition (" = 4.20, (� = .35; ? = .000). In the LSC condition (" = 2.17, (� = .26), our participants
rated their virtual character’s public awareness lower than in the HSC condition (? = .005) and HI condition
(? = .000). Moreover, participants in the MSC condition rated their virtual character’s public awareness lower
than in the HI condition (? = .008). Additionally, participants in the HSC condition rated their virtual character’s
public awareness lower than in the HI condition (? = .021). However, we did not find a significant difference
between the LI and LSC conditions (? = .184), between the LSC and MSC conditions (? = .185), and between the
MSC and HSC conditions (? = 1.000).

Virtual Character’s Surroundings Awareness: Our statistical analysis revealed a significant effect of the self-
correction behavior (Wilks’ Λ = .369, � [4, 19] = 8.107, [2? = .631, ? = .001) across the five conditions. The post
hoc pairwise comparison indicated that participants in the LI condition (" = 2.13, (� = .32) rated their virtual
character’s surroundings awareness lower than in the MSC condition (" = 3.46, (� = .36; ? = .005), HSC
condition (" = 3.74, (� = .41; ? = .001), and HI condition (" = 4.33, (� = .37; ? = .000). Moreover, participants
in the LSC condition (" = 2.35, (� = .32) rated their virtual character’s surroundings awareness lower than in
the MSC condition (? = .037), HSC condition (? = .016), and HI condition (? = .000). However, we did not find
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a significant difference between the LI and LSC conditions (? = 1.000), between the MSC and HSC conditions
(? = 1.000), between the MSC and HI conditions (? = .124), and between the HSC and HI conditions (? = .394).

Trust: There was a significant effect of the self-correction behavior (Wilks’ Λ = .344, � [4, 19] = 9.044, [2? = .656,
? = .000) across the five conditions. The post hoc pairwise comparison indicated that participants in the LI
condition (" = 2.17, (� = .23) rated their trust lower than in the MSC condition (" = 3.21, (� = .21; ? = .002),
HSC condition (" = 3.49, (� = .24; ? = .003), and HI condition (" = 4.33, (� = .28; ? = .000). Additionally,
participants in the LSC condition (" = 2.48, (� = .22) rated their trust lower than in the HSC condition (? = .013)
and HI condition (? = .000). Moreover, participants in the MSC condition rated their trust significantly lower
than in the HI condition (? = .001), and participants in the HSC condition rated their trust lower than in the HI
condition (? = .009). Finally, we did not find a significant difference between the LI and LSC conditions (? = .884),
between the LSC and MSC conditions (? = .053), and between the MSC and HSC conditions (? = 1.000).

Performance: The statistical analysis revealed a significant effect of the self-correction behavior (Wilks’Λ = .059,
� [4, 19] = 75.095, [2? = .941, ? = .000) across the five conditions. The post hoc pairwise comparison indicated
that participants in the LI condition (" = 1.52, (� = .20) rated the virtual character’s performance lower than
in the MSC condition (" = 3.22, (� = .30; ? = .000), the HSC condition (" = 4.57, (� = .26; ? = .000), and
the HI condition (" = 6.00, (� = .19; ? = .000). Additionally, participants in the LSC condition (" = 1.83,
(� = .22) rated the virtual character’s performance lower than in the MSC condition (? = .001), HSC condition
(? = .000), and HI condition (? = .000). Moreover, participants in the MSC condition rated the virtual character’s
performance lower than in the HSC condition (? = .000) and the HI condition (? = .000). Finally, participants in
the HSC condition rated the virtual character’s performance lower than in the HI condition (? = .000). However,
we did not find a significant difference between the LI and LSC conditions (p=.897).

Enjoyment: There was a significant effect of the self-correction behavior (Wilks’ Λ = .239, � [4, 19] = 15.135,
[2? = .761, ? = .000) across the five conditions. The post hoc pairwise comparison indicated that participants in
the LI condition (" = 2.39, (� = .41) rated their enjoyment lower than in the MSC condition (" = 4.09, (� = .42;
? = .004), HSC condition (" = 5.04, (� = .35; ? = .000), and HI condition (" = 5.30, (� = .28; ? = .000).
Moreover, participants in the LSC condition (" = 2.48, (� = .36) rated their enjoyment lower than in the MSC
condition (? = .011), HSC condition (? = .000), and HI condition (? = .000). Additionally, participants in the MSC
condition rated their enjoyment lower than in the HI condition (? = .039). However, we did not find a significant
difference between the LI and LSC conditions (? = 1.000), between the MSC and HSC conditions (? = .055), and
between the HSC and HI conditions (? = 1.000).

Frustration: We found a significant effect of the self-correction behavior (Wilks’ Λ = .281, � [4, 19] = 12.140,
[2? = .719, ? = .000) across the five conditions. The post hoc pairwise comparison indicated that participants
in the LI condition (" = 5.22, (� = .42) rated their frustration higher than in the HSC condition (" = 3.09,
(� = .38; ? = .011) and HI condition (" = 1.87, (� = .28; ? = .000). Participants in the LSC condition (" = 5.39,
(� = .35) rated their frustration higher than in the MSC condition (" = 3.70, (� = .42; ? = .020), HSC condition
(? = .002), and HI condition (? = .000). Moreover, participants in the MSC condition rated their frustration higher
than in the HI condition (? = .007). However, we did not find significant differences between the LI and LSC
conditions (? = 1.000), between the LI and MSC conditions (? = .096), between the MSC and HSC conditions
(? = 1.000), and between the HSC and HI conditions (? = .079).

Desire for Future Interaction: There was a significant effect of the self-correction behavior (Wilks’ Λ = .241,
� [4, 19] = 14.992, [2? = .759, ? = .000) across the five conditions. The post hoc pairwise comparison indicated
that participants rated the LI condition (" = 2.48, (� = .41) lower than the MSC condition (" = 4.00, (� = .40;
? = .010), HSC condition (" = 4.65, (� = .37; ? = .000), and HI condition (" = 5.70, (� = .24; ? = .000).
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Participants in the LSC condition (" = 2.35, (� = .36) rated their desire for future interaction lower than in the
MSC condition (? = .003), HSC condition (? = .000), and HI condition (? = .000). Moreover, participants in the
MSC condition rated their desire for future interaction lower than in the HI condition (? = .009). Additionally,
participants in the HSC condition rated their desire for future interaction lower than in the HI condition (? = .034).
However, we did not find a significant difference between the LI and LSC conditions (? = 1.000), and between the
MSC and HSC conditions (? = .610).

4.2 Logged Data
We provide descriptive statistics and the patterns of difference across the examined conditions of the dwell gazing
data in Table 2, and completion time and number of pieces in Table 3.

Table 2. Detailed results of our study for the gazing data. We report the Mean ("), Standard Deviation ((�), Minimum
("8=), Maximum ("0G ), and patterns of differences. We present significant results with bold font. LI: 0% Intelligence without
Self-correction, LSC: 0% Intelligence with 0% Accurate Self-correction, MSC: 0% Intelligence with 50% Accurate Self-correction,
HSC: 0% Intelligence with 100% Accurate Self-correction, and HI: 100% Intelligence without Self-correction. VC: Virtual
Character, PP: puzzle pieces, and PG: puzzle goal.

Virtual Character Puzzle Pieces Puzzle Goal

" (� "8= "0G " (� "8= "0G " (� "8= "0G Pattern of Difference

LI .14 .10 .01 .40 .10 .12 .00 .49 .02 .08 .00 .25
LSC .14 .11 .00 .36 .09 .11 .01 .39 .04 .10 .00 .12
MSC .15 .10 .00 .37 .07 .08 .00 .30 .03 .08 .02 .33
HSC .18 .09 .01 .45 .08 .07 .00 .28 .01 .03 .00 .27
HI .15 .08 .00 .35 .07 .08 .02 .36 .03 .08 .00 .40

Main Effect (Conditions)

� .450
? .771
[2? .087

Main Effect (Gazes)

� 11.840 (PP, PG) < VC
? .000
[2? .530

Interaction Effect (Conditions×Gazes)

� 1.285
? .321
[2? .407

Conditions 35 = 4 (Error 35 = 19), Gazes 35 = 2 (Error 35 = 21), and Interaction 35 = 8 (Error 35 = 15)

Dwell Gazing: We did not find a statistically significant result on dwell gazing data for the Conditions factor
(Wilk’s Λ = .913, � [4, 19] = .450, ? = .771, [2? = .087). However, the simple main effect analysis on the Gazes
factor indicated a statistically significant result (Wilk’s Λ = .470, � [2, 21] = 11.840, ? = .000, [2? = .530). The
post hoc pairwise comparison indicated that participants gazed at the virtual character more time (" = .15,
(� = .02) than the puzzle goal (" = .03, (� = .01; ? = .000) and puzzle pieces (" = .08, (� = .02; ? = .009).
However, we did not find a statistically significant result for the Conditions×Gazes interaction (Wilk’s Λ = .593,
� [8, 15] = 1.285, ? = .321, [2? = .407).

Completion Time: The statistical analysis revealed a significant effect of the self-correction behavior (Wilks’
Λ = .229, � [4, 19] = 16.032, [2? = .771, ? = .000) across the five conditions. The post hoc pairwise comparison

ACM Trans. Interact. Intell. Syst.

 



The Effects of Self-correction Behavior of an Intelligent Virtual Character • 21

Table 3. Descriptive statistics of completion time and number of puzzle pieces placed by participants. We report the Mean
("), Standard Deviation ((�), Minimum ("8=), Maximum ("0G), and patterns of differences. LI: 0% Intelligence without
Self-correction, LSC: 0% Intelligence with 0% Accurate Self-correction, MSC: 0% Intelligence with 50% Accurate Self-correction,
HSC: 0% Intelligence with 100% Accurate Self-correction, and HI: 100% Intelligence without Self-correction.

Completion Time Number of Puzzle Pieces

Condition M SD Min Max Pattern of Difference Condition M SD Min Max Pattern of Difference

LI 193.50 15.62 64.597 347.278 (LI, LSC, MSC) < (HSC, HI) LI 25.00 .00 25.00 25.00 HI < HSC < MSC < (LI = LSC)

LSC 227.37 33.30 71.361 827.542 LSC 25.00 .00 25.00 25.00

MSC 148.63 10.95 78.750 268.917 MSC 19.78 2.29 16.00 23.00

HSC 105.08 5.81 69.889 174.556 HSC 16.21 3.14 9.00 21.00

HI 93.41 4.64 54.556 156.944 HI 13.26 3.22 5.00 19.00

indicated that participants in the LI condition (" = 193.50, (� = 15.62) spent more time than in the HSC
condition (" = 105.08, (� = 5.81; ? = .000) and HI condition (" = 93.41, (� = 4.64; ? = .000). Additionally,
participants in the LSC condition (" = 227.37, (� = 33.30) spent more time than when we exposed them to the
HSC condition (? = .011) and HI condition (? = .002). Moreover, participants in the MSC condition (" = 148.63,
(� = 10.95) spent more time than in the HSC condition (? = .001) and HI condition (? = .000). However, we
did not find significant differences between the LI and LSC conditions (? = 1.000), between the LI and MSC
conditions (? = .100), between the LSC and MSC conditions (? = .127), and between the HSC and HI conditions
(? = .690).

Number of Puzzle Pieces: The statistical analysis showed a significant effect (Wilks’ Λ = .066, � [4, 19] = 94.163,
[2? = .934, ? = .000) across the five conditions. The post hoc pairwise comparison indicated that participants
in the LI condition (" = 25.00, (� = .00) placed more puzzle pieces than in the MSC condition (" = 19.78,
(� = 2.29; ? = .000), HSC condition (" = 16.21, (� = 3.14; ? = .000), and HI condition (" = 13.26, (� = 3.22;
? = .000). Additionally, participants in the LSC condition (" = 25.00, (� = .00) placed more puzzle pieces than
in the MSC condition (? = .000), HSC condition (? = .000), and HI condition (? = .000). Moreover, participants in
the MSC condition placed more puzzle pieces than in the HSC condition (? = .00) and HI condition (? = .000).
Lastly, participants in the HSC condition placed more puzzle pieces than in the HI condition (? = .000).

4.3 Qualitative Data
After our study participants had completed all conditions, we collected their impressions of our VR application
and interactions with the virtual character. We grouped the data into categories concerning the intelligence of
the virtual character and their interactions with the virtual character and our VR application.

Participants commented that they noticed the different behaviors of the virtual character in different conditions.
Specifically, P7 wrote: “The first couple tries [LI and HSC] was kinda interesting to see how the other individual
would interact with the puzzle, the last one [HI] felt like it was just cheating and knew where each piece would go
in the beginning.” P8 stated: “There was one experiment where it was actually doing very well, putting the edge
pieces in first, and was pretty accurate. But immediately after that, it looked like it was doing it randomly again…”
P11 mentioned: “From games 2 [HSC] and 3 [MSC], there was a shift in her being faster at interacting with the
puzzle and placing it in the correct spots.” Lastly, P18 reported: “Some of the individuals were intelligent enough to
collaborate, but on the other hand, some of them were not intelligent…”

Moreover, some participants reported their observations of the virtual character. Specifically, P4 reported: “The
sounds of the virtual person make me think that she’s confident at what she’s doing, but for some scenarios, she keeps
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placing the wrong puzzle.” Moreover, P11 mentioned: “The last game [LSC], I noticed she was able to turn the puzzle
piece, which surprised me.”

According to the collected comments, it can be said that most participants enjoyed the VR puzzle co-solving
experience with the virtual character, and some participants reported their preferred condition. Specifically, P2
wrote: “Great study!,” Both P13 and P5 stated: “It was good,” and P7 wrote: “It was a fun experience in general.”
Moreover, P8 reported: “This was interesting, though. I did like seeing how she was processing where to put the
pieces.” P9 wrote: “This was a nice experience,” and P16 reported: “It was a great experience, I enjoyed playing in
the last condition [HSC].” For P18, “It was interesting that we can play jigsaw puzzles with a virtual character…
Overall, I enjoyed solving a jigsaw puzzle with the virtual character.” P19 said: “I prefer the first one [HI] and last one
[HSC]…,” while P20 stated: “It was very enjoyable, I am really fond of VR, and seeing this only brings me hope for
the future.” P22 similarly mentioned that “It was really fun playing jigsaw with individuals that were intelligent…,”
and P23 wrote: “This was my first time using a VR device, and it was fantastic!”

However, some participants stated that it was frustrating when they solved the puzzle with an unintelligent
virtual character, such as in the conditions of 0% Intelligence without Self-correction or 0% Intelligence with 0%
Self-correction. Specifically, P1 mentioned: “It’s frustrating that sometimes the virtual character does not do their
part.” For P12, “The experience of the last condition [LI] is bad since the other individual keeps doing the wrong thing
and didn’t notice she did the thing wrong.” P18 reported: “Some of them were not intelligent, so I had to do it again,
which was kind of burdensome.” P19 mentioned that “The rest of them [LI, LSC, and MSC] are really boring and
tough,” while P22 said it was “…very frustrating when it came to those who would just put down pieces randomly.”

5 DISCUSSION
We asked our participants to provide self-reported ratings on co-solving a jigsaw puzzle with a virtual character
to understand how the self-correction behaviors assigned to the virtual character affected their perceptions and
experiences. We also collected gaze and completion time data to understand how participants observed the virtual
character, the tasks they had to work on, and how fast they solved the puzzle. The statistical analysis revealed
several interesting findings, which we discuss in the following subsections.

5.1 RQ1: Intelligence
Perceived intelligence concerns how humans perceive the intelligence of a system [90]. Several researchers have
investigated the factors of perceived intelligence, such as anthropomorphism [49], animacy [6], and understand-
ability [24]. We conducted this study because we wanted to extend current knowledge and explore how study
participants perceived the intelligence of a virtual character when we assigned different levels of intelligence and
self-correction behavior to it.

We found significant differences in the results of perceived intelligence. When either the Intelligence or the
Accuracy of Self-correction increased, the perceived intelligence ratings of our participants also increased. Based on
the patterns of differences (see Table 1), we found significant results between the LSC, MSC, and HSC conditions,
indicating that the Accuracy of Self-correction improved the perceived intelligence partially when the virtual
character made mistakes. We think that this finding indicates that the Accuracy of Self-correction can be another
factor impacting the perceived intelligence of virtual characters along with animacy [6], anthropomorphism
[49], appearance [17], and understandability [24]. However, we should also consider task complexity, which
researchers defined by various components, such as the number of elements [96], relationships between tasks
[97], time pressure [34], and cognitive demands [4]. For example, if the task is complex and challenging for the
participant, the self-correction and errors made by the virtual character may not be perceived in the same way. In
such scenarios, the ability of the virtual character to self-correct could be seen as a more critical and valuable trait,
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as the perceived task complexity is highly related to the cognitive workload [86]; thus, potentially enhancing its
perceived intelligence even more significantly.

We also found significant results—similar to those for perceived intelligence—when examining the intelligence
comparison ratings. We found that the Intelligence parameter was more affected than the Accuracy of Self-
correction from the comparison between the HSC and HI conditions. We also found that, except for the HI
condition, participants provided ratings below the scale’s mean (< 3.5). This finding agrees with Ullman et al.
[91] and Bennet et al. [7], as both studies reported lower ratings for robots when their participants compared
intelligence between themselves and robots. It should be noted that even if the rating in the HI condition was
above the scale’s average (participants provided an " = 3.83), we cannot really argue that they rated the virtual
character as more intelligent than themselves. This means that participants, even if they interacted with a highly
intelligent character that was able to solve the jigsaw puzzle efficiently, indicated that the virtual character’s
intelligence was not enough to make them rate it as a truly highly intelligent creature.

One possible explanation is that the virtual character could be perceived as “smarter” than the participants in
the specific context of solving the puzzle but not “smarter” than them in general. Our participants might have
recognized the virtual character’s proficiency in the narrow task of jigsaw puzzle co-solving without extending
that recognition to a broader, more general intelligence. Additionally, our participants may have inherently
considered their own intelligence as more comprehensive, involving emotional understanding, creativity, and
adaptability across different interaction scenarios, which a virtual character’s task-specific competence does
not encapsulate. This distinction highlights the multifaceted nature of intelligence. It suggests that task-specific
capabilities do not necessarily translate to a perception of overall higher intelligence [31, 85], as human intelligence
is not only about problem-solving skills but also includes creative, practical, and emotional aspects, which are
often absent in virtual characters [23].

5.2 RQ2: Awareness
Following the definition of awareness given in Govern’s and Marsch’s [33] study, we defined a virtual character’s
awareness as how much they understand the virtual environment. In our study, we focused on the virtual
character’s awareness of its inner feelings (private awareness), awareness of the participant (public awareness),
and awareness of how the puzzle-solving progressed (surroundings awareness). We observed that in all the
examined awareness ratings, the means of the LI, LSC, and MSC conditions were below the scale’s mean (< 3.5).
Such low ratings indicated that the virtual character did not convince our participants it was aware of them, aware
of the jigsaw puzzle co-solving process, or even aware of itself since it could not solve the puzzle independently.

Our intention behind examining the virtual character’s self-correction behavior was to make the virtual
character behave less like a robot and more like a human, as humans tend to make mistakes, recognize them, and
subsequently adjust their actions accordingly [71]. Becoming aware of the task requirements and dynamically
correcting its actions would allow the virtual character to perform more intuitively and fluidly, closely mimicking
human behavior. From the virtual character’s private awareness result, we found that the rating of the HI
condition was significantly higher than the other conditions. We can argue that such a result was because our
participants thought the virtual character should not make mistakes if it were aware of itself. We interpret
this finding according to Nirenburg et al. [70], who mentioned that imitating human behavior could improve
self-awareness. Thus, we think the HI condition had a higher rating than the HSC condition because the virtual
character solved the puzzle efficiently and in an error-free way, like the participants. There was also a significant
result between the MSC and HSC group of conditions and the LI and LSC group of conditions. We found that the
participants provided higher ratings on the MSC and HSC group of conditions. This result extends the findings of
a previous study of the self-awareness of a humanoid robot [73], indicating that focusing on the inner state and
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self-modifying the representation makes a robot self-aware. We think self-correction improved the participants’
perception of the virtual character’s private awareness.

In the result concerning the virtual character’s public awareness, we found that the rating of the HI condition
was significantly higher than the other conditions. Our finding agrees with Hayes et al. [37], who indicated that
their study participants thought the robot understood the dance movements they taught it well until it made the
first mistake. Our study participants felt the virtual character was not conscious of our participants when it made
its first mistake, although it could fix it. We also found the rating of the LSC condition was significantly lower
than that of the HSC conditions. Again, this finding extends Hayes et al.’s study, which reported that repeated
mistakes by a robot could invoke negative feedback. We thus argue that our study participants felt the virtual
character was not conscious of our participants when it tried to correct its mistake but still repeatedly placed the
puzzle piece in the wrong spot.

Lastly, the virtual character’s surroundings awareness showed different results than the other types of awareness.
We found the LI and LSC group of conditions had lower ratings than the MSC, HSC, and HI group of conditions.
This finding extends Drury et al.’s [25] study, which defined a human’s awareness of the overall goals of a task
with robots as one of the components of the perception of the environment in human-robot interaction. We
think that our study participants felt the virtual character was aware of the goal of the jigsaw puzzle co-solving
process when it could solve the puzzle like themselves, and our virtual character invoked higher ratings of the
surroundings awareness during the MSC, HSC, and HI conditions.

5.3 RQ3: User Experience
To explore how Intelligence and Accuracy of Self-correction affect user experiences, we included items in our
questionnaire to measure trust, performance, enjoyment, frustration, and desire for future interaction. We discuss
our findings in the following paragraphs.

The result for trust showed that our participants rated the HI condition highest while also indicating that
there were differences from the other conditions to which we exposed them. Based on this finding, we can argue
that the mistakes of the virtual character negatively affected study participants’ trust ratings, even if the virtual
character was able to correct its mistakes. We base this interpretation of our results on previous studies that
explored trust in human-robot interaction. Specifically, Hald et al. [36] reported that although their robot could
fix its mistakes, the trust of their study participants was already broken. Similarly, Roesler et al. [79] indicated
that their study participants’ trust in the robot decreased after it made errors. Furthermore, Salem et al. [80]
found that study participants reported higher ratings on trust when the robot followed user input correctly
than when it behaved incorrectly. However, we also found a significant difference between the LSC and HSC
conditions. Our finding extends Hald et al.’s [36] study. Such a significant result indicates that self-correction
accuracy could partially recover trust. This finding aligns with another previous study on the correlation between
verbal communication mistakes and trustworthiness [87], in which the authors stated that the mistakes of virtual
humans decrease their trustworthiness but temporarily. Additionally, we should note that we observed a ?-value
at the border of significance between the LSC and MSC conditions (? = .053). While this borderline statistical
significance may be a consequence of multiple comparisons, it does raise the possibility that trust could be further
enhanced under conditions of increased levels of Accuracy of Self-correction. Overall, we can argue that because
the reduced trustworthiness is temporary, the virtual character can only recover the trust partially by fixing its
mistake.

Regarding performance rating, our participants rated the HI condition higher. At the same time, our participants
were also able to identify and report differences with other conditions. Our finding agrees with Hald et al.’s [36]
study, which reported that people rated the performance of a robot that made a mistake lower than one that did not.
This finding also extends Esterwood et al.’s [26] study, which reported that any verbal repair strategies from the
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robots for their multiple mistakes did not positively impact study participants’ perceptions of their performances.
We think our study participants provided higher scores on the HI condition than on other conditions because
error-free decisions are more important than self-corrections.

The enjoyment results showed significant differences between the two groups of conditions; one group
comprises the LI and LSC conditions, and the other comprises the MSC, HSC, and HI conditions. We found that
when the virtual character was able to solve the puzzle independently, such behavior improved the enjoyment
of our participants. We interpret this finding based on a previous study concerning enjoyment in games [9],
which reported that a user’s enjoyment decreased when the user felt a high responsibility to the virtual character.
Moreover, we observed a ?-value at the border of significance between the MSC and HSC conditions (? = .055).
Such a borderline result should be interpreted with caution, as it does not denote a statistical significance.
However, we think it suggests that even small improvements in the levels of Accuracy of Self-correction could
potentially influence participants’ enjoyment levels. All in all, we argue the participants felt high responsibility
and less enjoyment when fixing the virtual character’s mistakes.

The frustration results showed that participants rated the LSC condition higher than the LI condition. This
finding confirms Cho’s [15] study, which indicated people felt frustrated when a virtual assistant misunderstood
a question and gave a wrong answer. The virtual character in the LSC condition made mistakes repeatedly and
caused more frustration than the virtual character that did not try to self-correct its mistakes.

Lastly, we asked our participants to report their desire for future interactions and whether they are willing
to interact in the future with the different behaviors assigned to the virtual character. Our participants rated
the HI condition the highest. We also found significant results between the HI and the other conditions. Our
finding agrees with and extends Cuadra et al.’s [19] study, which reported that participants preferred a perfect
voice assistant to a voice assistant that carried out irrelevant tasks according to users’ commands and then
corrected them. We think the participants preferred an error-free virtual character to a virtual character that
makes mistakes, even if the virtual character can correct itself.

5.4 RQ4: Behavioral Responses
Unfortunately, we could not find significant results in any of the collected dwell gazing measurements across
the five experimental conditions. Thus, we cannot argue that the Intelligence or the Accuracy of Self-correction
of the virtual character impacted the gaze of our participants. Perhaps this could be due to the pseudo-gazing
methodology not providing precise tracked-gaze data. However, as we discuss later, visual attention needs to be
reexamined to provide clearer conclusions. Nevertheless, the gaze factor revealed that participants gazed at the
virtual character more than the puzzle goal and puzzle pieces. This finding suggests that the virtual character
was the leading actor in the interaction scenario we developed. Therefore, our participants’ visual attention was
primarily drawn to the virtual character’s actions and behaviors rather than the specific task conditions. Thus,
we attribute this finding to the engaging nature of the virtual character, which likely drew participants’ attention
regardless of the examined conditions.

We found significant results in the completion time measurement between the group composed of the LI,
LSC, and MSC conditions and the group composed of the HSC and HI conditions. We also found that the more
intelligent the virtual character became, or the more accurate its self-correction was, the fewer puzzle pieces our
participants needed to place to complete the puzzle. Based on these findings, we can argue that a more intelligent
virtual character could indeed help participants co-solve a problem faster and significantly reduce their workload.

5.5 Limitations
When implementing virtual characters, it is necessary to consider their functionalities and user experiences.
Although all participants experienced our VR jigsaw puzzle co-solving experience without any issues, we would
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like to report several limitations. It should be noted that these limitations do not invalidate our implementation
and study; instead, they provide guides for and improve subsequent research.

First, the participants selected answers from a UI menu using the VR controller instead of verbal communication.
Although we did not collect data related to participants’ level of immersion, we think that such an interaction
mechanism might have impacted our participants’ immersion. Thus, we argue that further development of and
experimentation with speech-based communication will help us improve our participants’ levels of immersion.

Second, our virtual character exhibited fixed loop-based behavior with limited variations, impacting the realism
of its actions. Although self-correction behaviors were integrated, certain conditions required the virtual character
to deliberately place puzzle pieces incorrectly on the first attempt to demonstrate self-correction. This repetitive
error reduced the virtual character’s realism. Furthermore, the virtual character’s finger animations were not
active, leading to less natural and believable interactions. To enhance realism, future implementations should
incorporate a more sophisticated control over the frequency and nature of self-correction behaviors and activate
detailed finger animations to create more lifelike interactions.

Third, we consider the inability of our virtual character to convince our study participants that it is aware of
the virtual environment, the task, and itself as an additional limitation. Unfortunately, we did not implement
events such as a phone ring or a fly that buzzes and the corresponding reactions/animations that could make the
virtual character behave as if it were more aware of the environment in which the co-solving process is situated.
Moreover, our dialogs were short and not highly related to the performance of our virtual character. Thus, such
short dialogs made our participants think the virtual character was unaware of the task. We thus argue that such
additions could enhance study participants’ perception of a virtual character’s awareness.

Fourth, we think including haptic feedback might have improved the overall user experience and interaction
realism [46]. However, we did not implement haptic feedback in our study. While it could potentially enhance
the experience by mimicking the tactile feedback humans rely on when solving a real jigsaw puzzle, the current
limitations of VR controllers in providing realistic haptic sensations made its effectiveness uncertain [21].
Additionally, to our knowledge, there is no prior research on representing correct and incorrect puzzle piece
placement using haptic feedback. Thus, we argue that additional research in this direction is needed.

Fifth, we acknowledge that our study participants were young, which may have influenced the results. Conse-
quently, our findings might not apply to older adults or other age groups. We consider it an important area for
future research to investigate whether similar results would be observed in experiments involving older adults.

Lastly, we used a point-of-view method to check what the user gazed at while solving the puzzle. Although
this method provided some data about where our study participants were gazing (i.e., what was in the center of
their fields of view), such data did not reflect our participants’ actual gaze or fixations. We think an eye-tracker
would enable us to collect more reliable data that we can use to understand how participants co-solved the puzzle
and interacted with the virtual character.

6 CONCLUSIONS AND FUTURE WORK
Several researchers have explored how the behavior assigned to virtual characters can impact human perception.
Although several studies have investigated interaction with virtual characters, we have limited knowledge of
the impact of the self-correction behavior of a virtual character on humans’ perceptions and user experiences.
Therefore, in this paper, we explored how the self-correction behavior of a virtual character impacted our study
participants. We implemented a virtual character that could co-solve a jigsaw puzzle and self-correct its mistakes.
Then, we asked participants to report how they perceived the virtual character and their user experience, and we
collected application logs to understand how they interacted with the virtual character. The statistical analysis
showed that the self-correction behavior impacted our participants’ perception of the virtual character and their
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user experiences. Also, we found our participants gazed at the virtual character more than the puzzle pieces and
puzzle goal in all experimental conditions.

Although this study provides noteworthy results, it also has limitations, such as the absence of verbal communi-
cation with the virtual character. We think addressing the mentioned limitations will help us expand the findings
we report in this paper. Therefore, in future work, we would like to integrate text-to-speech and speech-to-text
into the virtual character to enable verbal communication and a chatbot based on language models to generate a
dialog to enhance the virtual character’s communication abilities and potential awareness. Moreover, we would
like to explore how different behaviors (e.g., selfish or competitive behavior) could impact how participants
perceive and interact with the virtual character.
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A SURVEY
We developed a survey to understand how the self-correction behavior of a virtual character affects human
perception and user experiences. The survey comprises 21 items examining ten variables: perceived intelligence,
intelligence comparison, virtual character’s awareness (private awareness, public awareness, and surroundings
awareness), trust, performance, enjoyment, frustration, and desire for future interaction. We provide our survey
along with the anchors of the scales in Table A1.
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Table A1. The survey we used in our study.

# Item Anchors of the Scale

Perceived Intelligence (Moussawi and Koufaris [66])

Q1 The other individual was able to operate without my intervention. 1=Never, 7=Always
Q2 The other individual was aware of the virtual environment. 1=Never, 7=Always
Q3 The other individual was able to set and pursue tasks by herself in anticipation of future needs. 1=Never, 7=Always
Q4 The other individual was able to complete tasks quickly. 1=Never, 7=Always
Q5 The other individual was able to find and process the necessary information for completing the task. 1=Never, 7=Always
Q6 The other individual was able to adapt/adjust its behavior based on prior events. 1=Never, 7=Always

Intelligence Comparison

Q7 Do you think the other individual was smarter than you? 1=Not at all, 7=Totally

Virtual Character’s Private Awareness (Govern and Marsch [33])

Q8 The other individual was conscious of her actions. 1=Not at all, 7=Totally
Q9 The other individual was aware of her innermost actions. 1=Not at all, 7=Totally

Virtual Character’s Public Awareness (Govern and Marsch [33])
Q10 The other individual was concerned about the way we played the jigsaw puzzle. 1=Not at all, 7=Totally
Q11 The other individual was self-conscious about the way we played the jigsaw puzzle. 1=Not at all, 7=Totally

Virtual Character’s Surroundings Awareness (Govern and Marsch [33])

Q12 The other individual was aware of everything in the virtual environment. 1=Not at all, 7=Totally
Q13 The other individual was conscious of what was going on around it. 1=Not at all, 7=Totally

Trust (Jian et al. [43])

Q14 I am suspicious of the other individual’s intention. 1=Not at all, 7=Totally
Q15 I am confident in the other individual. 1=Not at all, 7=Totally
Q16 The other individual is dependable. 1=Not at all, 7=Totally
Q17 The other individual is reliable. 1=Not at all, 7=Totally

Performance

Q18 Rate the performance of the other individual. 1=Not good, 7=Very good

Enjoyment

Q19 Did you enjoy solving the jigsaw puzzle with the other individual? 1=Not at all, 7=Totally

Frustration

Q20 I felt frustrated when interacting with the other individual. 1=Not at all, 7=Totally

Desire for Future Interaction

Q21 Are you willing to interact with the other the other individual again? 1=Not at all, 7=Totally
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